
Soft nanofluidics governing minority ion exclusion in charged hydrogels
Braschler et al - Soft Matter ESI-6

Electronic Supplementary Information 6

Analytical approximation for the Poisson-
Boltzmann solution in the solid nanochannel 
model

Introduction

Although no general solution to the Poisson-Boltzmann equation is known, a 
number of analytical approximations are available in the literature for particular 
conditions. This namely involves local conditions where the electric potential 
largely exceeds the thermal potential Vth, or is largely below this value. 

Providing analytical approximations has the strong merit to outline general 
tendencies difficult to understand from purely numerical simulations. It is 
namely of interest to have simple expressions for the electric potential at the 
channel midline and in the immediate vicinity of the alginate strands, to globally 
define the overall state in terms of double layer overlap and order of magnitude 
of maximum potentials encountered. In the context of the main text, the 
analytical approximations are applicable to the “solid nanochannel” model. 
Indeed, for historical reasons, much of the literature work on polyelectrolytes is 
based on a geometry where a small, highly charged fixed space charge region is 
bounded by a solution devoid of any fixed space charge.  

In our experimental conditions, we generally find regions where |>>Vth, and 
regions where on the contrary |<<Vth. In particular, near the alginate strands, 
we expect highly negative values for the electric potential, on the order of several 
–Vth. Near the channel midline, we expect lower electric potential values, which 
may or may not fulfill |<<Vth, depending on the pore size and free salt 
concentration. In fact, whether or not | drops below Vth allows to define to 
regimes: in the strong double layer overlap regime, | remains above Vth 
everywhere in the channel, whereas in the weak overlap regime, part of the 
channel along the symmetry axis is characterized by an electric potential below 
the thermal voltage Vth. 

Given that no global solution to the Poisson-Boltzmann equation is known, it is 
therefore necessary to delimit and analyze the different regions independently. 
However, once this analysis is done, we can still use a common expression for the 
partition coefficient K based on the relevant potentials at the channel walls and 
midline.
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Overview over the main approach and equations

This section gives a rough outline over the overall analytical approach carried 
out in this Electronic Supplementary Information. It should allow to rapidly 
locate the most relevant equations.

Fig. S31: General approach to analytical characterization of potential distribution 
and partition coefficient for the “solid nanochannel” model. The equations 
indicated concern directly the experimental conditions for the alginate 
hydrogels, the reader will also find more generic versions throughout the 
development in this electronic supplementary information section if necessary.

Fig. S31 shows the approach taken to the determination of the partition 
coefficient by analytical equations within the framework of the “solid 
nanochannel” model. The development follows the general outline given by 
Overbeek1 in that we evaluate the electric potentials 0 at the channel walls and 
m at the channel midline using appropriate simplifications, to then evaluate the 
partition coefficient K from a common final equation. We explicitly do not 
include the otherwise well-known case where || does not exceed the thermal 
voltage Vth (the Debye-Hückel theory2) as we do not encounter this condition 
experimentally.
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The algorithm indicated in Fig. S31 is implemented in the poisson.boltzmann.1D 
package available as Electronic Supplementary Information from Soft Matter.  

In terms of basic assumptions and notations, we follow Overbeek’s development 
here, which means that generally  is negative (this is also the case for our 
alginate hydrogels), and the fixed space charge region is located to the right (it is 
to the left in the main text). This does not change the main conclusions nor 
absolute values obtained.

Surface potential 0 near the alginate strands

Starting point of our analysis is the electric potential 0 found near the alginate 
gel strands (the channel walls in terms of the solid nanochannel model).

Due to the electrostatic shielding by the mobile ions, we generally expect the 
local potential near a given alginate strand to be little influenced by all the other 
strands. Also, due to the high local potential, there is almost complete local 
exclusion of co-ions, such that it is enough to take the counter-ions into account. 
Adapting the development given by Overbeek1 to these simplifications, we start 
out with a simplified Poisson-Boltzmann equation:

 



d2
d x 2  

NAqec0

 r 0

 e x  Vth

(S32)

where it is assumed that <<-Vth (and therefore |>>Vth) in the relevant areas, 
such that the co-ion term of exp(/Vth) can safely be neglected. Eq. S32 is the 
analog of eq. 33 in Overbeek’s paper1, using modern notation and neglecting the 
co-ion term.

In analogy to Overbeek’s approach1, integration of eq. S32 yields:



d
d x

 
2kBT NAc0

 r 0

e x  2Vth

(S33)

Since –d/dx represents the electric field, eq. S33 can be used to relate surface 
charge and surface potential1 via Gauss’s flux theorem:

(S34)

In eq. S34, we have also provided a numerical evaluation for our specific case. 
Indeed, from the relation between pore size and alginate concentration given in 
Fig. 3 in the main text (i.e. dpore=2rpore=877nm/c[mg/mL]), one can estimate an 
effective alginate strand diameter of about 0.6nm. This is done by noting that the 
volume fraction will be given by c[mg/mL]/(1500mg/mL), when a specific 
density of 1.5kg/l is assumed for the alginate, and the wall diameter will be the 
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pore diameter times the volume fraction (i.e. 
877nm/(mg/mL)/c*c/(1500mg/mL)=877nm/1500=0.6nm). Together with a 
molecular weight of 200g/mol per charge, one obtains an effective surface 
charge density of about =0.22C/m2 for each of the two pores bounding a wall 
(i.e. the molar concentration of charged hexose residues within the walls is 
1500g/L/200g/mol=7.5M; this corresponds to a fixed charged density of 
7500mol/m3*6.022*1023 charges/mol*1.6*10-19C/charge=7.2*108C/m3; with a 
wall thickness of 0.6nm, this gives an overall surface charge density of 
7.2*108C/m3*0.6*10-9m=0.43C/m2; this is distributed among the 2 lining pores, 
such that the relevant charge density is 0.22C/m2).  Given that the maximum free 
salt concentration c0 used throughout this study is 1M, eq. S34 confirms that || 
significantly exceeds Vth=25mV in all conditions. Indeed, as estimated by eq. S34, 
 ranges from -67mV at 1M to -240mV at 1mM free salt concentration. Eq. S34 
further expresses a logarithmic dependence of the surface potential on the 
charge density , in accordance with the developments by Manning3.

Determination of the double layer overlap regime

The next step is to determine whether weak or strong double layer overlap 
occurs. The two regimes are illustrated in Fig. S35. We refer to weak double layer 
overlap if the electric potential drops below an absolute value of Vth towards the 
channel midline (Fig. S35-A) and to strong double layer overlap if the absolute 
value of the potential never drops below the thermal voltage Vth (Fig. S35-B). The 
goal of this section is therefore to determine under what conditions || drops 
below Vth≈25mV.

Figure S35: Weak and strong double layer overlap regime. In the weak overlap 
regime (A), | drops below Vth towards the channel midline (near x=0), whereas 
in the strong overlap regime (B), it does not. The figure also indicates the 
relevant variables and the equations used to calculate the corresponding values 
or the corresponding trace.
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As a first step, we integrate equation S33 by separation of variables. We should 
however only apply S33 to the region close to the channel walls where indeed 
<Vth remains valid. In the strong double layer overlap regime, this will be 
everywhere, but in the weak double layer overlap regime, there will be a critical 
position xt such that at x=xt , =-Vth. For the moment, we shall suppose that such 
a position xt exists. Integration then yields:



exp  x  2Vth d
Vth

0

  
kBT NAc0

 r 0

dx
xxt

xrpore


(S36)

and therefore:



2Vth exp(1 2)  exp 0 2Vth   kBT NAc0

 r 0

 rpore  x t 
(S37)

We can isolate an expression for the width of the region where >Vth remains 
valid: 



rpore  x t  2 2  lDebye  exp(1 2)  exp 0 2Vth  
(S38)

Under our experimental conditions, we always have 0<-3Vth, allowing to 
neglect the second exponential in eq. S38. Ultimately, we can therefore estimate 
the width of the high-potential region around the alginate fibers to:



x  rpore  x t  2 2 exp 
1
2







 lDebye 1.7lDebye (S39)

Eq. S39 explicitly describes a particularity of the solutions to the Poisson-
Boltzmann equation involving islands of highly concentrated fixed charge 
density. Indeed, it appears from the numerical solutions that the width of the 
peak in the electric potential that is associated with such charged islands 
depends little on the absolute charge density within the islands. Merely, higher 
island charge seems to be associated with high electric potential peaks, but not 
larger ones. Eq. S39, taken in the limit of high electric potential and thus high 
charge density, indicates that the potential will drop to values on the order of the 
thermal voltage Vth within two Debye lengths from the edge of the island, 
regardless of the absolute charge density within the island.

Eq. S39 also allows to quantitatively distinguish low and high double layer 
overlap regimes. Indeed, if rpore<1.7lDebye, xt becomes negative and thus physically 
irrelevant, indicating high double layer overlap and ||>Vth everywhere. A low 
energy region with ||<Vth extending from the channel midline (x=0) to x=rpore-
1.7lDebye will exist only if rpore<1.7lDebye, defining the low double layer overlap 
regime. Succinctly, we can therefore note:

(S40)



rpore 1.7lDebye  strong double layer overlap
rpore 1.7lDebye  weak double layer overlap



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Weak double layer overlap regime

For the weak overlap regime, we should use boundary conditions reflecting the 
transition from a high potential to a low potential region at x=xt as defined by 
equation S39. The simultaneous existence of a low potential region from x=0 to 
x=xt along with a high potential region from x=xt to x=rpore , implies indeed a 
separate analysis for the two sub-regions.

For the high potential region between x=xt and x=rpore, we need to solve eq. S33. 

We proceed by separation of variables as before: 



exp  2Vth 
Vth



 d  
kBT NAc0

 r 0

dx
xt

rpore


(S41)

which yields:

(S42)

from which we isolate:
 



  2Vth ln 
x  x t

2 2lDebye
 exp 

1
2



















(S43)

By use of eq. S38, we further obtain:



  2Vth ln exp 
1
2








rpore  x
rpore  x t

 exp
0

2Vth










x  x t
rpore  x t











(S44)
showing the logarithmic transition for  from –Vth to 0 occurring on the 
interval from x=xt to x=rpore.

For the low potential region towards the channel midline, we can use the Debye-
Hückel linearization of the Poisson-Boltzmann equation2:



d2
dx 2 


lDebye

2
(S45)

valid in absence of fixed space charge, and wherever ||<Vth.

In this case, the solutions are well-known exponentials with decay constants of 
lDebye. Imposing the boundary conditions
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

d
dx








x0

 0
 (S46)

and 



(x  x t )  Vth
(S47)

the solution reads:



  Vth  cosh
x
lDebye









 cosh

x t
lDebye











(S48)

and the electric potential at the channel midline m=(x=0) becomes:



m  Vth cosh
x t
lDebye











(S49)

for our particular case, this will be:



m  Vth /cosh
rpore
lDebye

 2 2  exp(1 2)








 Vth /cosh

rpore
lDebye

1.7










(S50)
Eq. S50 again underpins the idea that the exact charge density of the alginate 
strands is much less important for the events near the channel midline than the 
fundamental ratio of channel size to Debye screening length.

Strong double layer overlap regime

The strong double layer overlap regime occurs when rpore<1.7*lDebye. In this case, 
|| does not drop to Vth anywhere in the channel, and we are looking for a single 
solution on the entire interval x=0 to x=rpore. We need to keep the exponential 
dependence in the Poisson-Boltzmann equation. However, in this case, the 
contribution of the co-ions to the space charge can be neglected, and we can 
adapt of Overbeek’s1 formula 41, such as to be able to find an analytical solution. 
We therefore have:

  



d
dx

 
kBT NAc0

0r
 exp  Vth  exp m Vth 

(S51)
Eq. S51 is designed to yield d/dx=0 for x=0, since then =m, in order to 
respect the channel symmetry.
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Eq. S51 can be integrated by separation of variables, one obtains:



d

exp  Vth  exp m Vth m



  
kBT NAc0

r0

dx
0

x


(S52)

which yields:



2Vth  exp
m

2Vth









 arctan exp   m  Vth 1


 


 x

kBT NAc0

r0 (S53)
From this, we can isolate an expression for :

(S54)

Eq. S54 in particular allows to determine m. We can do so by setting x=rpore, and 
noting that in this case, we also must have =0:

(S55)

In our case, m is still substantially smaller than 0 even for strong double layer 
overlap. In this case, we have:

(S56)

from which we isolate:

(S57)

Due to the high charge density associated with the alginate strands, we typically 
have values of 0 of minus several Vth under the conditions of strong double 
layer overlap (which are also the conditions of low ionic strength). In that case, 
we can further simplify:

(S58)

Eq. S58 indicates that even in case of the strong double layer overlap regime, the 
exact value of the charge density has little influence on the electric potential far 
from highly charged regions. The physical interpretation is analogous to the one 

8



Soft nanofluidics governing minority ion exclusion in charged hydrogels
Braschler et al - Soft Matter ESI-6

given for eq. S39 for the weak overlap regime: most of the counter ions are 
concentrated in the small regions with very large potentials near the gel strands, 
shielding off most of the space charge. As a result, what happens towards the 
channel midline is much more strongly dominated by the ratio of the Debye 
length to the pore radius than the exact charge density on the walls.

Partition coefficient

The final goal of this Electronic Supplementary Information section is to obtain 
an expression for the partition coefficient K.

Regardless of whether we are facing strong or weak double layer overlap, we 
dispose of the characteristic potentials 0 (from eq. S34) and m (either from eq. 
S50 or eq. S58) at this stage. We are now looking for a relation between these 
values and the partition coefficient K.

The partition coefficient K for a given ionic species is calculated by:

(eq. 8 in the main text)

This equation can obviously be evaluated if the distribution of the electric 
potential (x) is known. However, even in the absence of a known analytical 
solution for (x), Overbeek1 proposes to use the known distribution of d(x)/dx, 
generically valid for strongly and weakly overlapping double layers. Indeed, by 
substitution of variables, we have:

(S59)

This allows to make use the expression for d(x)/dx for overlapping double 
layers, given by Overbeek1 (reproduced here using modern notation):



d
d x

 
2c0RT
r0

cosh  x  Vth  cosh m Vth 
 (S60)

such that the partition coefficient can be estimated according to:

(S61)

which further yields by substitution for y=/Vth:

(S62)
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As we are unable to find a general analytical solution to eq. S62, the integration 
must be carried out numerically. If 0 and m are suitably chosen, the partition 
coefficient of a neutral substance (n=0) should be given by K0=1. Since however 
0 and m are generally chosen by approximate formulae (i.e. equations S34, 
S50 or S58), we generally find deviations from K0=1 when using eq. S62 for n=0, 
such that we prefer to normalize:

(S63)

Eq. S63 is reported as eq. 10 in the main text.

Thus, we can estimate the partition coefficient K for an ion of any valence n, 
without the explicit knowledge of the exact analytical formula for (x), merely 
from the values of 0 and m, by numerical integration of eq. S63. The physical 
interpretation of Eq. S63 is that it provides a suitably weighted mean of the local 
partition coefficients given by exp(-n/Vth).

Comparison to numerical simulation

It is finally of interest to compare the numerical simulation and analytical 
approximation formulae. This basically allows to double-check the two distinct 
approaches against each other, and gives an estimate of the precision of the 
analytical approximations.

We have done so for the twelve experimental conditions (the three gel 
concentrations at synthesis, and the 4 bulk KCl concentrations used through the 
main text), for the electric potential near the alginate strands (0), the electric 
potential at channel midline (m) as well as the partition coefficient for 
monovalent co-ions. We report here the partition coefficient K for both a 
monovalent and divalent negatively charged tracer. The reason is that 
experimentally, we have used fluorescein dianion, which carries two charges 
near neutral pH, so that we report the K values not only for the fundamentally 
important monovalent co-ions, but also for our experimental tracer. The 
numerical simulation corresponds to the “solid nanochannel” model, including 
the estimation of the hydrogel swelling and ensuing pore size variation.

We find overall reasonable agreement for 0 and m, the numerical simulation 
confirming indeed that 0 is nearly independent of the gel concentration. We 
also find a reasonable agreement in terms of the partition coefficients K1- and K2-, 
with better performance for K values closer to 1. The notation “4.4e-2” is 
intended to mean 4.4*10-2.
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Electric potential at alginate strands 0 [mV]

Gel Numerical (“Solid nanochannel”) Analytical (Eq. S34)
1mM 10mM 100mM 1M 1mM 10mM 100mM 1M

25mg/mL -217 -159 -101 -46 -238 -180 -123 -65
50mg/mL -217 -159 -101 -46 -238 -180 -123 -65
65mg/mL -217 -159 -101 -46 -238 -180 -123 -65

Electric potential at channel midlines m [mV]
Gel Numerical (“Solid nanochannel”) Analytical (Eq. S50 or S58)

1mM 10mM 100mM 1M 1mM 10mM 100mM 1M
25mg/mL -1.33 -1.4e-3 -6e-8 -7e-20 -1.81 -1.9e-3 -8e-8 -1e-19
50mg/mL -30 -1.4 -2.0e-3 -3e-10 -25 -1.9 -2.8e-3 -4e-10
65mg/mL -49 -6.25 -4.4e-2 -4e-7 -65 -8.4 -6.1e-2 -6e-7

Partition coefficient for monovalent anion (co-ion): K1-

Gel Numerical (“Solid nanochannel”) Analytical (Eq. S63)
1mM 10mM 100mM 1M 1mM 10mM 100mM 1M

25mg/mL 0.59 0.82 0.91 0.96 0.58 0.83 0.91 0.97
50mg/mL 0.15 0.59 0.82 0.93 0.19 0.58 0.83 0.94
65mg/mL 0.073 0.44 0.76 0.91 0.039 0.40 0.77 0.92

Partition coefficient for monovalent anion (co-ion): K2-

Gel Numerical (“Solid nanochannel”) Analytical (Eq. S63)
1mM 10mM 100mM 1M 1mM 10mM 100mM 1M

25mg/mL 0.45 0.76 0.87 0.95 0.44 0.77 0.88 0.95
50mg/mL 0.035 0.45 0.76 0.91 0.054 0.44 0.77 0.91
65mg/mL 0.0080 0.27 0.67 0.87 0.0022 0.22 0.68 0.88

Table S64: Comparison between numerical evaluation of the Poisson-Boltzmann 
equation and analytical approximations.

Finally, in terms of numerical evaluation, eq. S63 used for the analytical 
calculation of the partition coefficients in Table S64 presents the difficulty that at 
the lower bound of y=m/Vth, the term (cosh(y)-cosh(m/Vth))-1/2 diverges. To 
mitigate this problem, we use two complementary strategies. Firstly, it is 
necessary to adapt the step size dy values. Basically, the dy values need to be 
made sufficiently small such that the product (cosh(m/Vth+dy)-cosh(m/Vth))-

1/2dy tends to zero for the y values closest to m/Vth. In practice, we use support 
points y= m/Vth+0-m )/Vth*, where  is logarithmically spaced (i.e. of the 
type =10-20,10-19, …10-2,10-1, 1, with closer spacing in practice) such that the dy 
increase also exponentially as numerical summing proceeds. Second, given the 
very small difference between cosh(y) and cosh(m/Vth), for the y values closest 
to m/Vth, we used a linearized expression for the lower y values, since 
numerical imprecision will otherwise preclude successful evaluation of the small 
difference between cosh(y) and cosh(m/Vth).
For this, we proceeded with a Taylor development up to degree 2. We get:

(S65)



cosh(y)  cosh a  sinh(a) (y  a)  cosh(a)
y  a 2

2
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Eq. S65 is then advantageously used in numerical evaluation of eq. S63 for points 
where |y-a|<<1, since it allows to directly plug the potentially very small (y-a) 
values, rather than calculating y separately for the evaluation of the cosh(y)-
cosh(a) terms.

Software Implementation

We provide a software implementation of the algorithm outlined for the 
determination of the wall and midline potentials, as well as the partition 
coefficient described here. We do so in the “poisson.boltzmann.1D” package, 
available for download also as Electronic Supplementary Information (see 
Electronic Supplementary Information 5 for installation and usage instructions).

Specifically, different routines implement different aspects of the algorithm 
shown in Fig. S31, as shown in Table S66. We have kept the package as generic as 
possible, so rather than using the specific equations S50 and S58, we use their 
more generic versions S49 and S55 in the package. To obtain the partition 
coefficient from the hydrogel’s physicochemical and the experimental 
parameters, one would use the high-level function 
“partition_coefficient_analytical_hydrogel” in the “poisson.boltzmann.1D” 
package.

Function in poisson.boltzmann.1D package Equation / Role
potentials_analytical_nanochannel Eq. S34, S40, S49, S55 (numerical solution), 

and Debye-Hückel approximation for very low 
potentials2 

partition_coefficient_analytical_from_potentials Eq. S63, Eq. S65
partition_coefficient_analytical_nanochannel Coordinates the two functions above to enable 

single function call for getting the partition 
coefficient

partition_coefficient_analytical_hydrogel Converts the hydrogel parameters to the 
nanochannel equivalent and calls 
“partition_coefficient_analytical_nanochannel” 
with the appropriate values

Table S66: Software implementation
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