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Hydrogel pore diameter from mechanical 
testing

Context

The aim of this supporting information section is to provide the detailed theory 
for evaluation of the average pore size from mechanical testing of hydrogel 
samples. This provides the derivation of eq. 13 in the main text.

Water flow in hydrogels

Covalently crosslinked alginate hydrogels show stress relaxation which has been 
linked to the migration of pore water under pressure gradients.1 Pore water 
migration in hydrogels, in turn, is tightly linked to the pore radius in the 
framework of the Darcy hydraulic conductivity theory of porous media.2 Indeed, 
the flow speed of pore water in a porous medium is proportional to the pressure 
gradient, according to2:



v  
Ks


P
x (S8)

where Ks is the Darcy permeability coefficient,  the pore fluid’s viscosity, P the 
pressure and x a spatial coordinate along which the pressure gradient and flow 
are measured. The Darcy permeability Ks is directly linked to the pore radius3:



rpore  8Ks (S9)

where we have assumed a fraction pore volume of 



 1 (cf. eq. 2 in 3). 

Stress relaxation

In stress relaxation, the origin of the pore pressure gradient is the mechanical 
compression. Indeed, upon rapid uniaxial compression, the hydrogel will behave 
nearly incompressibly, leading to an apparent Poisson ratio of 0.5; as water loss 
leads to volume loss, the gel tends towards a purely uniaxial compression state 
with a Poisson ratio of 0, as suggested by a decrease of quite exactly 50% of the 
stress observed in a typical stress relaxation experiment1. The physics of the 
compression process and stress relaxation experiment is outlined in Fig. S10:
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Figure S10. Schematic view of the stress relaxation in covalently crosslinked hydrogels. The 
initial compression is isovolumetric, due to the intrinsic incompressibility or wall material and 
pore water, so when applying rapid initial loading (from A to B), lateral expansion compensates 
volume loss from uniaxial compression. Only upon stress relaxation the pore water is lost, and 
with it the associated lateral expansion (from B to C).

Taking the relaxation as being a transition from Poisson’s ratio of 0.5 to 0, the 
pressure in the pores can be seen as being responsible for the initial lateral 
extension, it therefore is given by:

P = E*(x+y) (S11)

Where E is the Young modulus of the polymer network, and the strains x and y 
represent the expansion perpendicular to the compression force (initial volume 
conservation at a Poisson ratio of 0.5 implies x+y=z, z being the direction of 
mechanical compression). The lateral strain x and y represents excess pore 
water that needs to be evicted from the pores before achieving P=0, hence we 
can also write



P 
V
V
E

(S12)

where 



V
V

 is the relative excess water; immediately after compression, we have 



V
V

= -z, while after stress relaxation, 



V
V

=0. 

In microscopic terms, excess pore water volume is lost over time due to 
gradients of the flow speed v throughout the gel:

(S13)

By comparison with Fick’s law of diffusion under mass conservation, the excess 

pore water volume 



V
V

 follows a diffusion equation:

(S14)
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where the apparent “diffusion” coefficient Dapp is given by:



Dapp 
EKs



Erpore

2

8 (S15)

It should be stressed that even though the mathematical form of eq. S13 
corresponds to the general form of diffusion equations for heat and molecules by 
thermal agitation, the water flow in the hydrogels is not technically a diffusive 
process, but rather bulk laminar flow in the small pores.

Fitting of experimental data

Given that the pore pressure P and the excess pore water volume are 
proportional, the local pressure will also follow the linear mathematics for a 
diffusing substance or heat, and the stress relaxation process in our disk-shaped 
samples can be described by adopting the solution for heat diffusion, with an 
originally homogeneous temperature, from a circular region bounded by a 
different temperature. The solution to this problem is known4, and by 
integration over the disk, we can write for the temporal evolution of the force 
F(t) measured during the stress relaxation experiment :

(S16)



F(t)  Frelaxed  4 F0  Frelaxed 
exp  j0,n

2 
t










j0,n
2

n1





where Frelaxed is the force remaining after complete stress relaxation, F0 the initial 
force, and j0,n is the n-th zero of the Bessel function of the first kind J0, while  is 
the stress relaxation time we desire to obtain. Eq. S16 essentially describes an 
exponential decay of the stress, with only minor corrections namely at small 
times t, arising from the terms with n>1.  The relaxation time constant   is linked 
to the physical radius the disk Rsample, as well as the underlying apparent 
diffusion coefficient4:

(S17)



 
Rsample
2

Dapp
such that we finally obtain for the pore radius:

(S18)



rpore  Rsample
8
E

which is given in the main text as eq. 13.
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