Supporting Information for:

From Multi-responsive Tri- and Diblock Copolymers to Diblock-Copolymer-Decorated Gold Nanoparticles: Effect of Architecture on Micellization Behaviors in Aqueous Solutions

Lichun Song, Hui Sun, Xiaolu Chen, Xia Han*, Honglai Liu

Scheme 1. Synthesis the ATRP initiator DTBE.

Scheme 2. Synthesis of the PDMAEMA-b-PMEO2MA-b-PDMAEMA, PMEO2MA-b-PDMAEMA-b-PMEO2MA triblock

Figure S1. Gel Permeation Chromatography (GPC) traces of polymers.

Polymer	$M_{HNMR}{}^a$	Mn ^b	Mw ^b	PDI ^b
PDMAEMA ₅₄	8945	8761	10838	1.23
PMEO ₂ MA ₈₀ -PDMAEMA ₅₄ -PMEO ₂ MA ₈₀	23233	39180	54981	1.40
PMEO ₂ MA ₆₈	12484	13369	17294	1.29
PDMAEMA46-PMEO2MA68-PDMAEMA46	21119	27748	36869	1.33

Table S1. The Composition, Molecular Weight and Polydispersity of Polymers

^aAs calculated from ¹H NMR spectra.

^bAs measured by GPC with THF as an eluent.

Figure S2. Thermal profile of PMEO₂MA (black) and PDMAEMA (red) in aqueous solutions as probed by UV-vis

spectra.

Figure S3. UV-vis spectra, size distributions and TEM images of Au NPs and Au@PDMAEMA₂₇-b-PMEO₂MA₈₀ particles dispersed in aqueous solutions.

Figure S4. Au@PMEO₂MA₃₄-b-PDMAEMA₄₆ nanoparticles well-dispersed in different solvents (water, THF,

chloroform and toluene).

Figure S5. (A) Zeta potential of different block copolymers in aqueous solutions at different pHs. (B) Zeta potential of Au@AB and Au@BA NPs at different pHs. The lines are drawn to guide the eye.

Figure S6. Photographs of the phase transfer process for the Au@PMEO₂MA₃₄-b-PDMAEMA₄₆ system: (A) solventtriggered NP transfer from toluene to the aqueous phase at 4 °C after shaking, (B) acid-triggered NP transfer from toluene to the aqueous phase at 4 °C after shaking, and (C) retention of NPs in the aqueous phase (0.2 M NaCl) upon heating to 50 °C