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1 Homogeneous swelling of hydrogels described
with scaling laws

The swelling of hydrogels is described via thermodynamics using a free en-
ergy functional as in the Flory-Rehner theory. The free energy functional
has two independent contributions: 1) the mixing free energy, and 2) the
strain energy function. The strain energy function accounts for the contri-
bution of the elastic deformation. It is described in terms of the stretching of
the polymers λi in the three principal directions. In the relaxed state λi = 1,
and is taken as the reference state. During tension polymers are stretched
λi > 1, while during compression λi < 1. In compression the polymer will
behave more like a collapsed random coil. For isotropic swelling it holds all
three principal stretches are equal: λi = λ. In the relaxed state the polymer
volume fraction has the value ϕref . Under the assumption of incompressibil-
ity of polymer and solvent (water), we have the following relation between
stretching and polymer volume fraction:

λ1λ2λ3 = λ3 =
ϕref
ϕ

(1)

Below, we will define ϕ̃ = ϕ/ϕref .
Often, it suffices to use the Neo-Hookean model to describe the elastic

deformation of hydrogels. The strain energy function is the following:

W (λ) = 1
2G

∑
i(λ

2
i − 1) (2)

The mechanical stress is derived from the strain energy function as follows:

σii =
1

λjλk

∂W

∂λi
−Πmix =

G

λ
−Πmix = Gϕ̃

1
3 −Πmix (3)
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Πmix is the osmotic pressure, derived from the mixing free energy. The
mixing free energy is traditionally described by Flory-Huggins theory. At
equilibrium the mechanical stress is zero everywhere in the gel. At equilib-
rium the polymer volume fraction is ϕ0, which will be different from ϕref .

Recently, we have investigated an alternative formulation with the Cloizeaux
scaling law [1], which states that the osmotic pressure scales as Πmix ∼ ϕβ,
with β an universal scaling exponent [2]. For Gaussian coils in a theta-
solvent β = 9/4, which applies also to biopolymer gels. We have shown
that the scaling law can be formulated in terms of ϕ̃ using the c*-theorem
of deGennes [3], and the relation ϕ0 = 2/3ϕref [4], which holds universally
for biopolymer gels. The c*-theorem related the elastic modulus G to ϕref :

G ∼ ϕβref , with β the same scaling exponent as in the Cloizeaux scaling law.

Πmix = αGϕ̃β (4)

The value of α is determined by the relation ϕ0 = 2/3ϕref , which holds at
equilibrium defined by:

σii = Gϕ̃
1
3 − αGϕ̃β (5)

The above expression of the osmotic pressure has is more compact formula-
tion than the Flory-Huggins theory, and is formulated in terms of ϕ̃. Hence,
it is better fitting with the framework of large deformation of elastic hy-
drogels - possibly allowing for analytical solutions of problems with simple
geometry.

2 Inhomogeneous deformation of elastic shells

It is known that non-swellable elastic shells with a pressurized internal cavity
undergo inhomogeneous deformation with respect to their reference state.
For spherical and cylindrical shells the mechanical equilibrium under a pre-
scribed internal pressure has an analytical solution. It is instructive to show
how this analytical solution is obtained, as it provides the framework for
mechanical equilibrium for swellable, elastic shells - which we have taken as
a model system for the cell wall.

2.1 Spherical shells

It is custom to describe first the kinetics of the large deformation. The elastic
shell is thought of to consists of infinitesimal thin control volumes. In the
deformed state, the control volume are characterized by their radius r and
thickness dr. The deformation is described with respect to a reference state,
which is often taken as the relaxed state where all polymers are unstretched,
i.e. λi = 1. In the reference state the control volume has a radius R and
thickness dR.
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For spherical geometries the principal stresses are the radial stress, σrr
and the two hoop stresses, which are equal due to symmetry σθθ = σϕϕ. The
stretches in these principal directions are λθ = r/R and λr = dr/dR. The
elastic material is assumed to be incompressible, meaning that the volume of
the control volume is invariant under deformation: dV = 4πr2dr = 4πR2dR.
In terms of the stretches this reads:

λ2θλr = 1 (6)

This shows that the stretches are not independent. It is custom to define
λθ = λ, and consequently, λr = 1/λ2.

The condition for mechanical equilibrium in spherical coordinates is [5]:

dσrr
dr

+ 2
σrr − σθθ

r
= 0 (7)

The expressions for the stresses are derived from the strain energy function.
For the Neo-Hookean model it has the following form: W = 1

2G(λ
2
r + λ2θ +

λ2ϕ − 3). G is the elastic modulus. The difference between the hoop and
radius stress is:

σθθ − σrr = G(λθ
∂W

∂λθ
− λr

∂W

∂λr
) = G(λ2 − λ−4) (8)

Consequently:

dσrr = 2G(λ2 − λ−4)
dr

r
(9)

The last term dr/r can be expressed in λ using the incompressibility
condition [5, 6]. Recall that λ = r/R, and the total derivative gives:

dλ =
dr

R
− r

R2
dR (10)

using R = r/λ, and

dr =
R2

r2
dR =

1

λ2
dR (11)

This renders:
dr

r
=

dλ

λ4 − λ
(12)

Now, we can write:

dσrr = 2G
λ2 − λ−4

λ4 − λ
dλ (13)

For an arbitrary strain energy function, the following relation holds [7]:

dσrr =
λ∂λW

λ3 − 1
dλ (14)
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The above equation can be integrated over the shell, using the boundary
values. At the inner surface the radius stress equals the internal pressure
σA = pint, and its stretch equals Λa = a/A, where a is the deformed inner
radius, and A is the inner radius in the reference state. At the outer surface
the radial stress equals the external pressure σB = pext, and the stretch is
Λb = b/B. Integration over the shell renders [8]:

2(pint − pext
G

=
1 + 4Λ3

a

Λ4
a

− 1 + 4Λ3
b

Λ4
b

(15)

The stretch of the outer surface can be expressed in Λa via the incompress-
ibility of the total shell. From the reference state the radii A and B are
known, and consequently: B3 − A3 = b3 − a3 = Λ3

bB
3 − Λ3

aA
3. Hence, one

can compute the relation between the pressure difference ∆p = pint − pext
and Λa.

The above expression is known as the thick shell theory [7]. For cells
often the thin shell approximation applies [9].

In absence of surface tension, σA = −pint, and σB = −pext. Hence,
to inflate the sphere, pint > pext. It is assumed that σrr ≪ σθθ, and thus
σθθ ≈ G(λ2 − λ−4). Mechanical equilibrium over a cross section of the thin
shell with thickness h and radius r renders:

(pint − pext)πr
2 = 2πrhσθθ (16)

using r = Rλ, and h = Hλ2 (with H the thickness of a relaxed shell) [7]:

(pint − pext) =
2H

R
G
(λ2 − λ−4)

λ3
=

2H

R
G(λ−1 − λ−7) (17)

The thick and thin shell theories are compared in the left pane of figure 1.

2.2 Cylindrical shells

For shells with cylindrical geometry the principal directions for the stress
are the radial, circumferential, and axial direction. We assume very long
cylinders with negligible axial stretch: λz = 1. Hence, the incompressibilty
condition becomes: λθλr = 1, with λθ = λ = r/R, and λr = 1/λ = dr/dR.

Mechanical equilibrium in cylindrical coordinates:

dσrr
dr

+
σrr − σθθ

r
= 0 (18)

For the Neo-Hookean model the difference between hoop and radial becomes:

σθθ − σrr = G(λ2 − λ−2) (19)

The last term dr/r can be expressed in λ via the incompressibility condition:

dr

r
=

dλ

λ3 − λ
(20)
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Hence, we can write:

dσrr = G
λ2 − λ−2

λ3 − λ
dλ (21)

Integration over the shell renders [10]:

pint − pext
G

=

(
1

2Λ2
a

− 1

2Λ2
b

− ln(Λa/Λb)

)
(22)

In the thin membranes approximation it is assumed that σrr ≪ σθθ.
Mechanical equilibrium over the axial cross section of the cylinder, with
inner radius r and thickness h, dictates:

(pint − pext)2Lr = 2Lhσθθ (23)

using the incompressibility condition:

(pint − pext) =
H

R
G(1− λ−4) (24)

The thick and thin shell theories are compared in the right pane of figure 1.
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Figure 1: Pressure stretch relations for elastic shells of spherical and cylin-
drical shape. the solid line with circles indicate the solution for thick shells
with H/R = 0.2, and the dashed lines indicate the solution for thin shells.
We observe mainly deviations for moderate deformations, Λ ≈ 2.

3 Cylindrical cell swelling for different fiber angles

We have performed a parameter study on the swelling of cylindrical cells,
having microfibers in the cell wall having different angles with the main axis.
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The values of the fiber angles we have taken are 5, 22, 33, and 44 degrees.
(Angles with 0 degrees angle are oriented along the circumferential direc-
tion). For larger degrees the numerical solution is instable. We think this is
caused by our assumption of a homogeneous axial deformation Λz, which is
incompatible with microfiber angles larger than 45 degrees. Simulations are
performed with k1/G = 1 and k2/G = 2.9 and B = 1.05R0 - using Eq.(32)
in the main text as the strain energy function. Results are shown in figures
2-3. Similar to the presentation of results in the main text, we show a) the
stretching in axial and circumferential direction (Λi/Λ0) as function of cell
volume V/V0, b) the pressure/volume curve ∆p/G vs. V/V0, and c) the
relative water content of the cell wall RWC = Vwall/Vtot as function of cell
volume.

For small angles (5 degrees) the circumferential stretching is very lim-
ited, but there is a large axial stretching. The pressure/volume curve does
not show a limiting cell volume. The relative water content in the cell wall
is decreasing with increasing cell volume, but reaches an asymptotic value.
This kind of behaviour is very similar to the growth of hyphen of fungi,
which grow via stretching in the axial direction. Indeed, this kind of fiber
orientation has been observed for hyphen in their growth stage. During mat-
uration glucan fibers are synthesized, which are oriented in axial direction -
thereby changing the average fiber orientation towards 45 degrees.

At larger angles we observe effects of strain hardening in the pres-
sure/volume curves. The limiting cell volume is quite similar for angles
ψ0 ≥ π/10, but with increasing angles a higher pressure is required to reach
the limiting cell volume. Surprisingly, the RWC is showing a minimum. We
view it out of scope of our paper to investigate this point into depth.

As can be expected, the stretching in the axial and circumferential di-
rection depends highly on the fiber orientation. For small angles, ψ0 < π/8
there is little stretching in circumferential direction, while for large angles,
ψ0 ≈ π/4, there is little stretching in axial direction. For intermediate an-
gles there is a mixed behaviour, stretching occurs in both directions without
little signs of strain hardening.
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Figure 2: Swelling of cylindrical cells with fiber angles 5 (left) and 22 (right)
degrees
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Figure 3: Swelling of cylindrical cells with fiber angles 33 (left) and 44 (right)
degrees
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4 Numerical solution procedure

The cell wall has volume Vwall = B3 − A3. It will be divided in N control
volumes, with radius r, and thickness dr. The volume is then dV = 4πr2dr,
with polymer volume fraction ϕ. In the relaxed state the radius is R, the
thickness dR, and the polymer volume fraction ϕref , with volume dVref =
4πR2dR. Amount of polymer is conserved during swelling:

ϕrefdVref = ϕdV (25)

or rather with introducing the stretch factors λθ = r/R, and λr = dr/dR:

1 = ϕ̃λ2θλr (26)

At swelling the tension is:

σθθ = Gϕ̃λ2θ −Πmix

σrr = Gϕ̃λ2r −Πmix (27)

with Πmix = αGϕ̃β. α is determined by the fact that free isotropic swelling
occurs at ϕ̃ = 2/3. Isotropic stretching at free swelling conditions imposes

λ = λθ = λr. Hence, λ = ϕ̃−
1
3 . Substitution of that shows that equilibrium

is obtained at free swelling in pure water. The stretching is Λ0 = (2/3)−
1
3 .

The control volume has a radius of Λ0R, and thickness Λ0dR.

4.1 Algoritm for swelling spherical shell

Initialisation: set λ = Λb, r = b = ΛbB, and σ = σb = 0.
Iterate for all control volumes, starting at the outside

Solve ϕ via σrr, cf. Eq.(27).
Compute thickness of control volume dr/dR = λr = 1/(ϕ̃λ2)
Compute λ(r − dr) = (r − dr)/(R− dR).
Compute dσ/dr
Compute σ(r − dr) = σ(r) + dr × dσ/dr
Advance to next control volume

∆p = σb − σa

4.2 Algoritm for swelling cylindrical shell

Initialisation: set λ = Λb, r = b = ΛbB, and σ = σb = 0.
Assume a certain Λz

Iterate until convergence
Iterate for all control volumes, starting at the outside

Solve ϕ via σrr
Compute thickness of control volume dr/dR = λr = 1/(ϕ̃λΛz)
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Compute λ(r − dr) = (r − dr)/(R− dR).
Compute dσ/dr
Compute σ(r − dr) = σ(r) + dr × dσ/dr
Advance to next control volume

∆p = σb − σa
Compute Λz from force balance in axial direction via iteration
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