
1. Detail derivation of the governing equations.

We use  to denote the nominal stress when the DE membrane is in its s

equilibrium state without the voltage and  as the nominal stress after the voltage s

applied. According to the first two assumptions, 

, \* MERGEFORMAT (1)Ms s s  

where  is the Maxwell stress.Ms

Following the ideal DE field theory1, The electric displacement is defined as

, \* MERGEFORMAT (2)D E

where ε is the permittivity of DE, and is assumed to be constant during the deformation, 

E is the electric field given as, 
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h

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Denoting H as the thickness in the reference state and considering the incompressibility 

of the material, h is obtained as

, \* MERGEFORMAT (4) 1 2/h H  

where λ1 and λ2 are the stretch ratios along the longitudinal and latitudinal directions. 

The electric filed can be obtained by Eqs. \* MERGEFORMAT (3) and \* 

MERGEFORMAT (4) as

. \* MERGEFORMAT (5)1 2E
H
 

According to the former study2, the Maxwell stress components caused by the 

electric filed, and defined as

, \* MERGEFORMAT (8)2
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Combining Eqs. \* MERGEFORMAT (5), \* MERGEFORMAT (8), and \* 

MERGEFORMAT (9), we obtain 
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To account for the stiffening effect of the DE membrane2, the material is modeled 

using Gent model with the following free energy density,
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where μ is the shear modulus, and Jlim is a constant that represents the stretch limit of 

the elastomer. When the DE membrane is in its equilibrium state without the voltage, 

the nominal stress components  and  can be obtained by1s


2s
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Deformation theory for thin membrane structures under mechanical loading are 

well developed in the literature. Here we follow the work by Adkins and Rivlin3 to 

derive the governing equations. We assume that the DE membrane is axisymmetric 

along the z direction as shown in the schematic in Fig. 5. The deformation of the DE 



membrane is represented by two functions z(R) and r(R), where z and r are the 

coordinates of a material point in the deformed state, and R is the coordinate of the same 

material point in the reference state. The stretch along the latitudinal direction is defined 

as . 2 /r R 

As demonstrated in Fig. 5, a material particle with radius form R to R+dR in the 

reference state, but with new radius form r(R) to r(R+dR) and height form z(R) to 

z(R+dR) . We define the slope angle of the particle relative to the latitudinal direction 

as θ(R). The geometric relation yields the following two equations,
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Force balance along z direction (Fig. 5(c)) requires that

. \* MERGEFORMAT (19) 1 1 2sin cosd HRs RP
dR

    

Also, force balance along the direction normal to z direction (Fig. 5(d)) is enforced by 

the following equation
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Eqs. \* MERGEFORMAT (19) and \* MERGEFORMAT (20) give the following two 

equations,
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Eqs. \* MERGEFORMAT (17), \* MERGEFORMAT (18), \* MERGEFORMAT (21) 



and \* MERGEFORMAT (22) are the governing equations that are solved for the four 

variables, r(R), z(R), θ(R) and λ1(R), which require suitable boundary conditions.

We set the origin of the coordinates at the apex of the inflated DE membrane,

. \* MERGEFORMAT (23)(0) 0, (0) 0z r 

To maintain axisymmetric deformation of the inflated membrane, the slope angle θ at 

the apex is fixed as

. \* MERGEFORMAT (24)(0) 0 

Finally, the radial stretch ratio at the circular edge of the DE membrane is assumed to 

be constant and equal to the prestrech ratio throughout the deformation . 0 C( )r R R

The boundary-value problem is solved as an initial-value problem using the 

standard shooting technique. The initial values at the apex of the DE balloon for the 

four governing equations are r(0) = 0, z(0) = 0, θ(0) = 0, λ1(0) = λapx and they are used 

for the numerical integration of the governing equations. The value λapx is the prestretch 

at the apex of the DE balloon and is obtained by satisfying the boundary condition

.0 C( )r R R

Once the four governing equations are solved, the state of the DE membrane is 

determined. 

1. Z. Suo, Acta Mechanica Solida Sinica, 2010, 23, 549-578.
2. T. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Yang and Z. Suo, Journal of the Mechanics 

and Physics of Solids, 2013, 61, 611-628.
3. J. E. Adkins and R. S. Rivlin, Philosophical Transactions of the Royal Society of London. 

Series A, Mathematical and Physical Sciences, 1955, 248, 201-223.


