Polydimethylsiloxane bilayer films with embedded spontaneous curvature.

A.I. Egunov, J.G. Korvink, and V. A. Luchnikov

(Supplementary Information)

Fig.S1 The kinetics of extraction of silicone oil in an organic solvent bath for a 2 *mm*-thick PDMS film, at room temperature. The initial mass content of the oil in the film is 50 %. Solid line : mass reduction, $(m_0-m)/m_0$. Dashed line: linear dimension reduction, $(l_0-l)/l_0$. Each point corresponds to a sample which was removed from the solvent bath, dried for several hours, then weighed and measured. (A) Extraction in chloroform bath. (B) Extraction in a 2-propanol bath.

Fig.S2 Shrinking of PDMS film due to extraction of silicone oil. (a) The films with no oil (x = 0), and 60 % initial volume oil fraction (x = 0.6) after the oil extraction. Two PDMS films, prepared separately, are superimposed for illustrative purposes. (b) Relative shrinking of the linear dimensions of the films, $\delta = (d_0 - d)/d_0$, after extraction of the silicone oil, for different initial fractions of the oil in the PDMS/oil mixture. The dashed line corresponds to the theoretical shrinkage,

$$\delta_{theor} = 1 - \left(V_{pdms} / (V_{pdms} + V_{oil})\right)^{\frac{1}{3}} = 1 - \left(1 - x\right)^{\frac{1}{3}}$$
. The oil fraction, x, is defined as $x = V_{oil} / (V_{pdms} + V_{oil})$

Figure S3. PDMS bilayer beams after oil extraction. The volume fraction of oil in the second layer before extraction is x = 0.2. The thickness of the first layer is 0.32 ± 0.01 mm. The thickness of the second layer grows from 0.11 mm to 1.25 mm (from left to right).

Figure S4 Behavior of the function F(n,m) in the vicinity of the global extremum. Solid line: F(n,1); dashed line: F(1,m).

Fig.S5 PDMS bilayer beams, with approximately equal thickness of the layers, and varying oil fractions, *x*, in the top layer before extraction.

X	0.1	0.2	0.3	0.4	0.5
d	0.035	0.072	0.11	0.16	0.21
u	0.035	0.072	0.11	0.10	0.21
H mm	0.79	0.7/	0 923	0 769	0 9/
,	0.75	0.74	0.525	0.705	0.54
d/H mm ⁻¹	0.044	0 006	0 1 2 1	0.204	0 220
u/11, 11111	0.044	0.050	0.121	0.204	0.220
R mm	1/1.6	77	11	27	2.2
N, 11111	14.0	/./		5.7	5.2
k mm ⁻¹	0.07	0.13	0.23	0.27	0.31
к, 11111	0.07	0.15	0.23	0.27	0.31

Table SI. The parameters of the beams shown in Figure S5.

Fig.S6 Cross-sections of tubes formed at different water temperatures, for a fixed rolling time t = 1 min.

Fig.S7 Sample projections, corresponding to the minimal and the maximal curvatures. A radius of curvature, R, is found from the system of equations:

$$(\mathbf{r}_1 - \mathbf{A})^2 = (\mathbf{r}_2 - \mathbf{A})^2 = (\mathbf{r}_3 - \mathbf{A})^2 = R^2$$

(A is the center of the circumscribed circle).

Fig.S8 Colouring of the 3D-scan of an isosceles triangle (OH = 100 mm, AB = 3 cm, see Fig.7) according to (a,b) the absolute values of the maximal (κ_1) and minimal (κ_2) curvatures, (c) Gaussian curvature, and (d) mean curvature.