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 In this Electronic Supplementary Information (ESI), we compare our model predictions 

with our previous molecular dynamics (MD) simulations of cohesive granular shear flows in 

Ref. [62] (S. Takada et al. Phys. Rev. E 90, 062207 (2014)). 
 

 Figure 1 displays the stability diagram obtained from our MD simulations [62], where the 

red (blue) shaded area represents unstable (stable) region. The solid line is the neutral 

curve derived from our linear stability analysis, where we confirm its qualitative agreement 

with the MD simulations, except for the data with 𝑠 = 10−3 and 𝜁∗ = 10−4, and 𝑠 = 𝜁∗ = 100. 

In our MD simulations, the inelasticity is quantified by the microscopic viscosity coefficient, 

𝜁∗, i.e. the proportionality constant for the damping force between cohesive granular 

particles in contact, where the restitution coefficient can be roughly estimated by a linear 

function of 𝜁∗ as 𝑒 = 1 − 𝐶𝜁∗ with a constant 𝐶 ≈ 5 × 10−3 (see Fig. 1 in Ref. [62]). 

 

 
 

Figure 1. A double logarithmic plot of the phase diagram obtained from the MD simulations, 

where the symbols are as in Fig. 4 (in the paper). The solid line is the neutral curve derived from 

our linear stability analysis, i.e. Eq. (37) in the paper. In both the MD simulations and the 

neutral curve, the mean volume fraction is fixed to be 𝜙0 = 0.31, while the microscopic viscosity 

coefficient for the MD simulations, 𝜁∗, is related to the restitution coefficient by 𝑒 = 1 − 𝐶𝜁∗ with 

a constant, 𝐶 = 5 × 10−3. 

 

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2015



 

 

 

 
 

Figure 2. Profiles of (a) the volume fraction, �̅�, and (b) the dimensionless velocity field, �̅�𝑥, 

defined as Eqs. (21) and (22) in the paper, respectively, where we scale 𝑦 = �̃� 𝑑⁄  and �̅�𝑥 by the 

dimensionless system size, 𝐿∗ = 𝐿 𝑑⁄ , and the dimensionless relative speed, 𝑈∗ = 𝑠𝐿∗, respectively. 

The (blue) dotted and (red) solid lines are the results of the dynamic van der Waals model in the 

initial (𝑡 = 0) and steady (𝑡 = 8000) states, respectively (as listed in the legend in (b)), where we 

have used 𝜙0 = 0.31, 𝑠 = 5 × 10−4, 1 − 𝑒2 = 7 × 10−7, and 𝐿∗ = 50. The green broken line in (a) is 

the scaled volume fraction, Eq. (1), where the fitting constant is given by α = 2.25. The open 

circles are the results of the MD simulations [62] (as listed in the legend in (b)), where the mean 

volume fraction, the dimensionless shear rate, and the dimensionless system size are given by 

𝜙𝑀𝐷 = 0.31, 𝑠𝑀𝐷 = 10−0.2, and 𝐿∗𝑀𝐷 = 32, respectively. In the MD simulations, the inelasticity is 

quantified by the microscopic viscosity coefficient, 𝜁∗ = 100.2. 

 

 

 Figure 2 shows the profiles of (a) the volume fraction, �̅�, and (b) the dimensionless velocity 

field, �̅�𝑥, where we scale 𝑦 = �̃� 𝑑⁄  and �̅�𝑥 by the dimensionless system size, 𝐿∗ = 𝐿 𝑑⁄ , and the 

dimensionless relative speed, 𝑈∗ = 𝑠𝐿∗, respectively. The volume fraction obtained from the 

dynamic van der Waals model (the red solid line in Fig. 2(a)) deviates from the MD 

simulations (the open circles) since both the shear rate and the inelasticity used in the MD 

simulations are much higher than those used in our model. Note that our model becomes 

numerically unstable for such a high inelasticity as mentioned in Sec. 3.2. However, a scaled 

volume fraction, 

 

�̅�∗ = 𝛼�̅� + (1 − 𝛼)𝜙0 ,       (1) 

 

well agrees with the MD simulations (the green broken line) if the fitting constant is fixed to 

be α = 2.25. Therefore, both the shape and positions of the interfaces are well reproduced by 

the dynamic van der Waals model. On the other hand, our model well describes the velocity 

field obtained from the MD simulations (the red solid line and the open circles in Fig. 2(b)). 

 


