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SUPPLEMENTARY INFORMATION

Adhesive Loose Packing of Small Dry Particles
Wenwei Liu, Shuiqing Li, Adrian Baule, Hernán A. Makse

Here, we provide details on the simulation techniques used in our paper. Section I gives the 

computational details of a novel discrete-element method for small particles, based on an adhesive 

contact model (JKR theory). We denote this model as Adhesive DEM. The detailed simulation results, 

by considering different deposition velocities and particle sizes, are provided in Section II.

I. Computational method: Adhesive DEM

A newly-developed adhesive DEM approach is used in which the translational and rotational 

motions of all particles are evolved using the linear and angular momentum equations (see 

computational details in [1, 2])
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where  and  are, respectively, velocity and rotation rate of an individual particle,  is the particle v Ω m

mass, and  is the moment of inertia. In a vacuum system, the fluid forces and torques   22 / 5 pI mr

acting on the particle,  and , are ignored.  denotes the collision and the van der Waals FF FM AF

adhesion forces in the equation for translational motion. Meanwhile, in the equation for rotational 

motion,  denotes the sum of the collision and van der Waals adhesion torques on the particle. They AM

include,
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where  is the normal adhesively elastic contact force,  is the tangential force due to the sliding nF sF

friction,  is the rolling resistance and  is the twisting resistance.  is the particle radius. ,  rM tM ir n st
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and  are the normal, tangential and rolling direction unit vectors, respectively.rt

Normal Elastic and Adhesive Forces 

Collision and adhesion forces for fine particles are dominated by the normal elastic and adhesive 

forces and the torque due to rolling resistance that arise from the presence of the adhesive force. 

Forces and torques are also present to inhibit sliding and twisting motions (see [1]), but the magnitude of 

these two motions is small for sufficiently fine particles, e.g., micron-sized particles. 

The normal force acts in the direction of the unit vector n which points parallel to the line 

connecting the centers of the two particles, denoted by i and j, such that . We ijij xxxxn  /)(

consider two particles with radii  and , elastic moduli  and , and Poisson ratios  and . An ir jr iE jE i j

effective particle radius R and effective elastic moduli E and are defined by
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The particle normal overlap  is defined by , where  and  denote the N jijiN rr xx  ix jx

particle centroid positions. The particle normal adhesive and elastic forces are written together as 

, where a Lennard-Jones like formula for  between two particles is proposed (see more nF nA F AF

details in [2, 3]),
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which are in turn based on the JKR theory, as , here  3 23
4 [ 3 6 (3 ) ] /nea R F Rw RwF Rw E      )(ta

is the contact region radius and w is work of adhesion due to van der Waals interactions (namely twice 

the surface energy) of two contacting particles [4]. As shown in Fig. S1, the JKR model assumes that the 
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adhesive force is only acting inside the contact radius , and results in a larger contact area than the a

classic Hertzian contact, . Basically, in contrast to the DMT model (Derjaguin-Mueller-Topprov),  ha a

the JKR model is appropriate for compliant, adhesive particles for which the particle’s Tabor parameter 

is large than unity, implying the length scale of elastic deformation is large compared to the length scale 

of the adhesive force [2]. Then, the critical force and overlap,   and , and the equilibrium contact CF C

radius  are given by,0a
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The solution to Eq. S4 is stored prior to onset of time-stepping to build a look-up table of the normal 

force ratio  as a function of the overlap ratio  using a double interpolation algorithm. Cn FF / CN  /

Typical values of w are about 10-30 mJ/m2, from either measurements or Lifshitz theory’s predictions.  

Fig. S1 Schematic diagram illustrating the stress distributions for JKR model

Effect of Adhesion on Rolling Resistance

The rolling resistance exerts a torque on the particle in the  direction, where  is the r rM t n rt

direction of the “rolling” velocity. An expression for the rolling displacement of arbitrary-shaped 
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particles is derived by Bagi and Kuhn [5]. Taking the rate of this expression and specializing to spherical 

particles of equal size yields an equation for the “rolling velocity”  of particle i asLv

 . (S6)nΩΩv  )( jiL R

An expression for the rolling resistance torque  is postulated in the form,rM

, (S7)r r rM k  ξ t

where the direction of rolling is  and the rolling displacement is . Rolling /r L Lt v v  dL

t
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involves an upward motion of the particle surfaces in one part of the contact region and a downward 

motion in the other part. The presence of an adhesive force between the two contacting surfaces thus 

introduces a torque resisting rolling of the particles. An expression for the rolling resistance in presence 

of adhesion was derived by Dominik & Tielens [3, 6], which yields the coefficient  as,rk

.  (S8)3/2
04 ( / )r Ck F a a

The critical resistance occurs when the rolling displacement magnitude, , achieves a critical value, ξ

corresponding to a critical rolling angle . For , the rolling displacement  in (S6) Rcritcrit /  crit  ξ

is replaced by . It is noted, according to the measurement by atomic force spectroscopy,  is crit r t crit

around (0.6-1.0)% [7].

Effect of Adhesion on Sliding and Twisting Resistance

As aforementioned, both sliding and twisting are relatively rare for small adhesive particles – rolling 

is generally the preferred deformation mode for agglomerates of adhesive particles [2, 6]. It is therefore 

desirable to introduce relatively simple expressions for sliding and twisting resistance in the DEM 

framework. The standard sliding model for the case without adhesion is the spring-dashpot model 
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proposed by [8], for which the sliding force  is given by a linear spring-dashpot,  sF s t t s t S sF k      t v t

(  is tangential direction), when  and by the Amonton friction expression  when st crits FF  crits FF 

. Here, a simple model proposed by Thornton [9] and Thornton and Yin [10], agreeing crits FF 

reasonably well with experimental data, is introduced. In this model, the only influence of van der Waals 

adhesion on sliding force is to modify the critical force  at which sliding occurs, which is given by,critF

,                               (S9)2crit f ne CF F F 

where  is the critical normal force given in (S5) and  is a friction coefficient that is normally about CF f

0.3. When particles are being pulled apart, the normal force approaches  at the point of separation, CF

at which point the critical sliding force in (S8) approaches . f CF

The same model with twisting resistance can be used in the presence of adhesion, with the critical 

force  used to obtain . For twisting moments with magnitude greater than , critF critcritt aFM
16
3

,


 crittM ,

the torsional resistance is given by 

. (S10)TTCnft FFaM  /2
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II. Detailed simulation results using DEM

The generation of the packing starts with the successively random free falling of 1000 uniform 

spheres with an initial velocity U0 at a height H. The physical and geometrical parameters used in the 

DEM simulations are listed in Table S1. Firstly, a sensitivity analysis between the cases L=20rp and 

L=40rp was conducted. The parameters used and results are displayed in Table S2. As shown in Fig. S2, 

the difference of volume fraction of different length scales can be negligible so that L=20rp is big 

enough to reproduce bulk properties. Then, as shown in Fig. S3, the particle deposition velocity (U0), the 
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particle radius (rp) and the work of adhesion (w) between the particles all significantly affect mesoscopic 

packing structures. The increased velocity and particle size, or decreased w results in a relatively dense 

packing.
Table S1. Parameters used in DEM simulations

Physical parameter Value Units

Particle number (N) 1000

Particle radius (rp) 1,5,10,50 μm

Particle density ( )p 2500 kg/m3

Work of adhesion (w)
30,20,10,
5,1

mJ/m2

Characteristic length (L) 20 pr μm

Particle Injection height (H) 4 L μm

Gravity acceleration (g) 9.81 m/s2

Deposition velocity(U0) 0.5~10 m/s

Table S2. Sensitivity analysis between cases of L=20rp and L=40rp

rp(μm) L(μm) U0(m/s) w (mJ/m2) N
Volume 
fraction

Coordination 
number

1 20 0.5 30 1000 0.149 2.21

1 40 0.5 30 1000 0.148 2.19



7

Fig. S2 The packing structures of L=20rp and L=40rp with other parameters being the same.

Fig. S4 further shows the volume fraction of all the simulation conditions under different sizes of 

particles (rp), deposition velocities (U0) and the work of adhesion (w). It is seen from the four sub-plots 

that, with increased final velocity, the volume fraction increases and then stays at a value around 0.6. 

However, the extent of the increment is somewhat different under variation of the particle sizes or under 

variation of w. For instance, for a relatively small particles (rp=1μm), it is interesting that the very loose 

packing (φ=0.15) can be achieved at a low final velocity (U0=0.5m/s) and strong adhesion (w=30mJ/m3). 

When the final velocity grows to 10m/s, the volume fraction reaches 0.575 with an increment of ~0.425. 

However, when w goes down to 0.1mJ/m3 (nearly non-adhesive), the volume fraction hardly changes 

with particle inertia U0. On the other extreme, for much bigger particles with rp=50μm, despite the 

changes of either U0 or w, the volume fraction seems to converge to a horizontal line, which means the 

effects of both adhesion and particle inertia on the volume fraction is small for big particles.
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FIG. S3 Typical packing structure with different physical parameters. Different color represents different coordination 
number Z. (a)(b)(c)(d) stands for U0=0.5, 2, 6 and10m/s, respectively with rp=1μm and w=30mJ/m2;

(e)(f)(g)(h) stands for rp=1, 5, 10 and 50μm, respectively with U0=1m/s and w=30mJ/m2;
(i)(j)(k)(l) stands for work of adhesion w=30, 20, 10, 5mJ/m2 respectively with rp=1μm and U0=1m/s.
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    When particles are being packed, the adhesion forces like van der Waals forces tend to attract 

particles and make them stick together while the particle inertia which has a quadratic correlation with 

particle velocity will urge them to move and impact with other particles. If adhesion is stronger than 

particle inertia, particles will be caught at the first impact and hardly move or roll so that a loose packing 

structure is easier to form. With the increase of particle sizes or velocities, particle inertia will become 

much stronger than the adhesion. As a consequence, more collision will take place and particles tend to 

be closer and form a denser packing structure.

FIG. S4 Variation of volume fraction with different velocities and work of adhesion under the conditions of different 
sizes of particles. Left top (rp=1μm), right top (rp=5μm), left bottom (rp=10μm), right bottom (rp=50μm).

In order to interpret the balance between the interparticle adhesion and the particle inertia, we 

particularly employ a dimensionless adhesion parameter , which is firstly proposed by 2
0= / (2 )p pAd w U r

Li and Marshall [11], as seen in details in the main text for interpreting the results of Fig. 2. 
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