Supplementary Materials:

Interaction Potentials from Arbitrary Multi-Particle Trajectory Data

Ian C. Jenkins, John C. Crocker and Talid Sinno¹

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Generation of the Mobility Tensor

The terms of the mobility tensor, \mathbf{D} , are generated using the equations provided by Schmitz and Felderhof¹. This approach generates a solution for \mathbf{D} in the form of a series expansion, which has been solved for up to 12^{th} order terms. The expression used for the self-interaction terms in the mobility tensor is given by

$$\mathbf{D}_{ii} = k_B T \left(4\pi \eta A_0^S \right)^{-1} \mathbf{I} \,, \tag{1}$$

where η is the viscosity of the fluid and A_0^S is a scattering coefficient. The two-particle interaction terms are generated using the expression

$$D_{ij,\alpha\beta}\left(\mathbf{R}_{ij}\right) = k_B T \left(\alpha \left(R_{ij}\right) \hat{R}_{ij,\alpha} \hat{R}_{ij,\beta} + \beta \left(R_{ij}\right) \left(\delta_{\alpha\beta} - \hat{R}_{ij,\alpha} \hat{R}_{ij,\beta}\right)\right),\tag{2}$$

where \mathbf{r}_{ij} is the distance vector between a pair of particles, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, and $\hat{R}_{ij,\alpha}$ is a normalized directional component of \mathbf{r}_{ij} such that $\hat{R}_{ij,\alpha} = r_{ij,\alpha} / r_{ij}$. Values for the parameters α and β are found using

¹ Corresponding author: <u>talid@seas.upenn.edu</u>, Tel: (215) 898-2511

$$4\pi\eta\alpha\left(\mathbf{r}_{ij}\right) = \frac{1}{2}r_{ij}^{-1} - \frac{1}{15}S_{i}r_{ij}^{-3} + A_{1,i}^{S}A_{1,j}^{S}r_{ij}^{-7}$$

$$+ \left[A_{1,i}^{S}\left(-6B_{1,j}^{S} + \frac{18}{5}A_{2,j}^{S} + \frac{3}{5}\hat{B}_{2,j}^{P}\right) - \frac{2}{5}S_{1}A_{1,i}^{S}A_{1,j}^{S}\right]r_{ij}^{-9}$$

$$+ \left\{A_{1,i}^{S}\left(-\frac{48}{5}B_{2,j}^{S} + \frac{40}{7}A_{3,j}^{S} + \frac{12}{7}B_{3,j}^{P}\right) - B_{1,i}^{S}\left(-5B_{1,j}^{S} + \frac{68}{5}A_{2,j}^{S} + \frac{3}{5}\hat{B}_{2,j}^{P}\right)\right\}$$

$$+ A_{2,i}^{S}\left(\frac{21}{5}A_{2,j}^{S} + \frac{6}{5}B_{2,j}^{P}\right) - \frac{4}{5}S_{i}\left[A_{1,i}^{S}\left(-B_{1,j}^{S} + \frac{3}{2}A_{2,j}^{S}\right)\right]$$

$$+ \left(-\frac{3}{2}B_{1,i}^{S} + \frac{9}{10}A_{2,i}^{S} + \frac{3}{20}\hat{B}_{2,i}^{P}\right)A_{1,j}^{S} + \frac{1}{450}S_{i}S_{j}A_{1,i}^{S}A_{i,j}^{S}\right\}r_{ij}^{-11} + \left[i \leftrightarrow j\right] + O\left(R_{ij}^{-13}\right)$$

$$4\pi\eta\beta(\mathbf{r}_{ij}) = \frac{1}{4}r_{ij}^{-1} + \frac{1}{30}S_{i}r_{ij}^{-3} - \left\{B_{1,i}^{S}\left(-\frac{1}{6}B_{1,j}^{S} + \frac{4}{15}A_{2,j}^{S} + \frac{2}{3}A_{2,j}^{T} + \frac{1}{10}\hat{B}_{2,j}^{P}\right)\right.$$

$$+ A_{2,i}^{S}\left(\frac{61}{480}A_{2,j}^{S} + \frac{5}{12}A_{2,j}^{T} + \frac{3}{40}\hat{B}_{2,j}^{P}\right) - \frac{2}{3}A_{2,i}^{T}A_{2,j}^{T} - \frac{1}{15}S_{i}$$

$$\times\left(-B_{1,i}^{S} + \frac{4}{5}A_{2,i}^{S} + 2A_{2,i}^{T} + \frac{3}{10}\hat{B}_{2,i}^{P}\right)A_{1,j}^{S}$$

$$+ \frac{1}{150}S_{i}S_{j}A_{1,i}^{S}A_{1,j}^{S}\left\{r_{ij}^{-11} + \left[i \leftrightarrow j\right] + O\left(R_{ij}^{-13}\right)\right\}$$

$$(4)$$

where the various $A_{m,i}^{\alpha}$ and $B_{m,i}^{\alpha}$ terms are scattering coefficients and S_i is given by

$$S_i = 3 \frac{A_{2,j}^P}{A_{0,i}^S}.$$
 (5)

The notation $[i \leftrightarrow j]$ indicates that the equation should be repeated once with all i and j indices swapped².

REFERENCES

- ¹ R. Schmitz and B. U. Felderhof, Physica A **116**, 163 (1982).
- ² P. Reuland, B. U. Felderhof, and R. B. Jones, Physica A **93**, 465 (1978).