Elettronic Supplementary Information

Organic salts and aromatic substrates in two-component gel phases formation: the study of properties and release

processes.

Paola Vitale, Francesca D'Anna*, Salvatore Marullo and Renato Noto*

^aDipartimento STEBICEF, Sezione di Chimica, Università degli Studi di Palermo, Viale delle Scienze-Parco d'Orleans II, 90128 Palermo (Italy).

Guest	[<i>p</i> -Xyl-(oim) ₂][1,5-NDS]		[<i>p</i> -Xyl-(oim) ₂][2,6-NDS]	
	n _{guest} /n _{gelator}	$T_{g-s}^{a}(^{\circ}\mathrm{C})$	n _{guest} /n _{gelator}	T_{g-s}^{a} (°C)
	0/1	74	0/1	47
Xanthone	0.5/1	74	1.0/1	42
	1.0/1	69	1.7/1	44
	2.0/1	70	2.0/1	62
	3.0/1	72	3.0/1	68
	4.0/1	74	4.0/1	71
	4.4/1	76	4.4/1	78
	4.7/1	79	5.0/1	86
	5.0/1	85	7.0/1	92
	6.0/1	85	10.0/1	95
			11.9/1	94
Pyrene	1.0/1	75	2.0/1	29
	2.0/1	78	3.0/1	58
	3.0/1	77	4.0/1	62
	4.0/1	79	5.0/1	72
	5.0/1	81	6.0/1	62
	6.0/1	84	7.0/1	65
	7.0/1	88	8.0/1	71
	7.5/1	85	9.0/1	68
	8.0/1	84	10.0/1	63
	9.0/1	82		
L-Proline	0.4/1	71		
	1.0/1	69		
	2.0/1	68		
	3.0/1	64		
	3.3/1	62		
	4.7/1	64		
	5.0/1	69		

TableS1. T_{g-s} values for two component gels collected at 8 % (w/w; guest/gelator) of gelator in 1-propanol as function of guest/gelator molar ratio.

^a T_{g-s} were reproducible within ± 1 °C.

Figure S1. DSC traces of gels obtained at 8% (w/w) of gelator concentration in 1-propanol from (a) $[p-Xyl-(oim)_2][1,5-NDS]$; (b) $[p-Xyl-(oim)_2][2,6-NDS]$; (c) benzene/ $[p-Xyl-(oim)_2][1,5-NDS]$; (d) benzene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (e) hexafluorobenzene/ $[p-Xyl-(oim)_2][1,5-NDS]$; (f) hexafluorobenzene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (g) anthracene/ $[p-Xyl-(oim)_2][1,5-NDS]$; (h) anthracene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (i) anthraquinone/ $[p-Xyl-(oim)_2][1,5-NDS]$. (j) anthraquinone/ $[p-Xyl-(oim)_2][2,6-NDS]$; (k) xanthone/ $[p-Xyl-(oim)_2][1,5-NDS]$; (l) xanthone/ $[p-Xyl-(oim)_2][2,6-NDS]$; (m) pyrene/ $[p-Xyl-(oim)_2][1,5-NDS]$; (n) pyrene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (o) L-phenylalanine/ $[p-Xyl-(oim)_2][1,5-NDS]$; (p) L-phenylalanine/ $[p-Xyl-(oim)_2][2,6-NDS]$; (q) L-proline/ $[p-Xyl-(oim)_2][2,6-NDS]$; (i) L-proline/ $[p-Xyl-(oim)_2][2,6-NDS]$; (h) pyrene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (h) L-proline/ $[p-Xyl-(oim)_2][2,6-NDS]$; (h) L-proline/

Figure S2. T_{g-s} as function of guest/gelator molar ratio corresponding to two component gel formed at 8% (w/w) of gelator concentration in 1-propanol.

Figure S3. Plots of RLS intensity as a function of time corresponding to two component gel phases formation at 8% (w/w) of gelator and using a 5/1 guest/gelator molar ratio in 1-propanol ($\lambda = 560$ nm for gels containing anthraquinone and 523 nm for all the other gels).

(a)

(c)

(e)

(b)

(d)

(f)

(h)

(g)

(i)

Figure S4. SEM images of xerogels obtained from (a) $[p-Xyl-(oim)_2][1,5-NDS]$; (b) $[p-Xyl-(oim)_2][2,6-NDS]$; (c) anthracene/ $[p-Xyl-(oim)_2][1,5-NDS]$; (d) anthracene/ $[p-Xyl-(oim)_2][2,6-NDS]$; (e) anthraquinone/ $[p-Xyl-(oim)_2][1,5-NDS]$; (f) anthraquinone/ $[p-Xyl-(oim)_2][2,6-NDS]$; (g) xanthone/ $[p-Xyl-(oim)_2][1,5-NDS]$; (h) xanthone/ $[p-Xyl-(oim)_2][2,6-NDS]$; (i) L-Proline/ $[p-Xyl-(oim)_2][2,6-NDS]$; (oim)₂][2,6-NDS]; (i) L-Proline/ $[p-Xyl-(oim)_2][2,6-NDS]$; (b) xanthone/ $[p-Xyl-(oim)_2][2,6-NDS]$; (c) A statistical determinant of the s

Figure S5. Plots of absorbance values as a function of time, at 25 °C, corresponding to extraction processes of guests in 1-propanol solution at: (a-h) 8% gelator concentration and (i-p) CGC of different gelator used ($\lambda = 356$ nm for gels containing anthracene and 332 nm for all the other gels).

Figure S6. Plots of absorbance values as a function of time, at 25 °C, corresponding to extraction processes of anthracene changing solvents and contact surface area ($\lambda = 356$ nm).

Figure S7. Plots of RLS intensity as a function of time corresponding to extraction processes of guests in 1-propanol solution from two component gel phases formed by $[p-Xyl-(oim)_2][1,5-NDS]$ ($\lambda = 560$ nm for gel containing anthraquinone and 523 nm for all the other gels).