Electronic Supplementary Information for

Heat-set gel formed from easily accessible gelators of succinamic acid derivative (SAD) and primary alkyl amine (R-NH₂)

Di-Chang Zhong, Lie-Qiang Liao, Ke-Jun Wang, Hui-Jin Liu, Xu-Zhong Luo*

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China. E-mail: <u>zhong.luo-supermolecule@outlook.com</u>

1) Synthesis and characterization of succinamic acid derivatives (SAD-4, SAD-6, SAD-8, SAD-10)

Scheme S1 The synthesis of succinamic acid derivatives: SAD-4, SAD-6, SAD-8, SAD-10

All starting materials were available from commercial suppliers and used without further purification. SAD-4 was synthesized as follows: A mixture of 1,4-butanediamine (0.1 mol) and butanedioic anhydride (0.2 mol) was dissolved in 15 mL DMSO in a round-bottomed flask equipped with a condenser. After stirring for about 4 h at 50 °C the solution was mixed with H_2O (45 mL). White solid was obtained after filtration. The method for preparing SAD-6, SAD-8, and SAD-10 is similar to that of SAD-4 except using 1,6-hexanediamine, 1,8-octadiamine and 1,10-diaminodecane instead of 1,4-butanediamine, respectively. Highly pure products were gotten after recrystallized in mixed solvents of ethanol/water (v/v = 1:1) for four times, respectively. The corresponding satisfactory ¹HNMR, FT-IR, melting point and mass spectrum data were showed below.

SAD-4: N-[4-(3-Carboxy-propionylamino)-butyl]-succinamic acid

White solid. mp: 181-183 °C. Yield >60%.

¹H NMR (400MHz, DMSO- d_6 , δ , ppm): 12.05 (S, 2H), 7.80 (t, J = 5.4 Hz, 2H), 3.0 (d, J = 5.6 Hz, 4H), 2.40 (t, J = 6.8 Hz, 4H), 2.27 (t, J = 7.0 Hz, 4H), 1.35 (t, J = 2.8 Hz, 4H).

IR (KBr): 3311, 3066, 2944, 2880, 1696, 1632, 1547, 1470, 1424, 1325, 1280, 1198, 1037, 917, 801, 695, 638, 546 cm⁻¹ MS-EI [M-H]⁻ calcd. for $C_{12}H_{20}N_2O_6$: m/z 288.1; found: 287.1.

SAD-6: N-[6-(3-Carboxy-propionylamino)-hexyl]-succinamic acid

White solid. mp: 180-182 °C. Yield >50%. ¹H NMR (400MHz, DMSO- d_6 , δ , ppm): 12.02 (S, 2H), 7.79 (t, J = 5.8 Hz, 2H), 3.02-2.97 (m, 4H), 2.49 (t, J = 1.6 Hz, 4H), 3.39 (t, J = 7.0 Hz, 4H), 2.27 (t, J = 8.0 Hz, 4H), 1.35 (t, J = 6.4 Hz, 4H). IR (KBr): 3311, 3057, 2936, 2867, 1696, 1640, 1537, 1471, 1421, 1313, 1250, 1185, 945, 693, 637, 561, 482 cm⁻¹ MS-EI [M-H]⁻ calcd. for C₁₄H₂₄N₂O₆ : m/z 316.2; found: 315.1.

SAD-8: N-[8-(3-Carboxy-propionylamino)-octyl]-succinamic acid

White solid. mp: 175-177°C. Yield >50%.

¹H NMR (400MHz, DMSO-*d*₆, *δ*, ppm): 12.02 (S, 2H), 7.78 (t, *J* = 5.4 Hz, 2H), 3.01-2.97 (m, 4H), 2.41-2.38 (m, 4H), 2.27 (t, *J* = 7.0 Hz, 4H), 1.35 (t, *J* = 6.4 Hz, 4H), 1.22 (m, 8H).

IR (KBr): 3312, 3058, 2931, 2857, 1696, 1640, 1537, 1470, 1422, 1319, 1277, 1196, 951 cm⁻¹ MS-EI [M-H]⁻ calcd. for $C_{16}H_{28}N_2O_6$: m/z 344.2; found: 343.1.

SAD-10: N-[10-(3-Carboxy-propionylamino)-decyl]-succinamic acid

White solid. mp: 174-176°C. Yield >50%.

¹H NMR (400MHz, DMSO-*d*₆, δ , ppm): 12.01 (S, 2H), 7.78 (t, *J* = 5.6 Hz, 2H), 3.01-2.96 (m, 4H), 2.39 (t, *J* = 7Hz, 4H), 2.27 (t, *J* = 7.0 Hz, 4H), 1.35 (t, *J* = 6.2 Hz, 4H), 1.22 (s, 12H). IR (KBr): 3315, 3055, 2928, 2854, 1695, 1640, 1536, 1471, 1423, 1314, 1273, 1197, 946, 799, 692, 635, 583, 501 cm⁻¹ MS-EI [M-H]⁻ calcd. for C₁₈H₃₂N₂O₆: m/z 372.2; found: 371.2.

2) Gelation data

Table S1 Gelation data of succinamic acid derivatives (SAD-4, SAD-6, SAD-8, SAD-10)

	Compounds		SAD-n				
		SAD-4	SAD-6	SAD-8	SAD-10		
	Solvents						
1	Tetralin	Р	Р	Р	Р		
2	Benzene	Р	Р	Р	Р		
3	Toluene	Р	Р	Р	Р		
4	o-Xylene	Р	Р	Р	Р		
5	m-xylene	Р	Р	Р	Р		
6	p-xylene	Р	Р	Р	Р		
7	Mesitylene	Р	Р	Р	Р		
8	Nitrobenzene	Р	Р	Р	Р		
9	Chlorobenzene	Р	Р	Р	Р		
10	o-Dichlorobenzene	Р	Р	Р	Р		
11	H ₂ O	S	Р	Р	Р		
12	ethyl acetate	Р	Р	Р	Р		
13	Ethanol	S	Р	Р	Р		
14	n-amyl alcohol	Р	Р	Р	Р		
15	Methanol	S	Р	Р	Р		
16	Chloroform	Р	Р	Р	Р		
17	Isopropyl ether	Р	Р	Р	Р		
18	Cyclohexane	Р	Р	Р	Р		
19	DMSO	S	S	S	S		
20	Petroleum ether	S	S	Р	Р		
21	Ethylene glycol	S	S	Р	Р		
22	Methylene Chloride	Р	Р	Р	Р		

S = solution; P = precipitate.

	Compounds		R-NH ₂					
	Solvents	R ₁₀	R ₁₂	R ₁₄	R ₁₆	R ₁₈		
1	Tetralin	S	S	S	S	S		
2	Benzene	S	S	S	S	Р		
3	Toluene	S	S	S	S	S		
4	o-Xylene	S	S	S	S	S		
5	m-xylene	S	S	S	S	Р		
6	p-xylene	S	S	S	S	Р		
7	Mesitylene	S	S	S	S	Р		
8	Nitrobenzene	S	S	S	S	S		
9	Chlorobenzene	S	S	S	S	S		
10	o-Dichlorobenzene	S	S	S	S	S		
11	H ₂ O	INS	INS	INS	INS	INS		
12	ethyl acetate	S	S	S	S	S		
13	Ethanol	S	S	S	S	S		
14	n-amyl alcohol	S	S	S	S	S		
15	Methanol	S	S	S	S	S		
16	Chloroform	S	S	S	S	S		
17	Isopropyl ether	S	S	S	Р	Р		
18	Cyclohexane	S	S	S	S	S		
19	DMSO	S	S	S	S	Р		
20	Petroleum ether	S	S	S	S	S		
21	Ethylene glycol	S	S	S	S	Р		
22	Methylene Chloride	S	S	S	Р	Р		

Table S2 Gelation data of primary alkyl amine $\text{R-NH}_2(\mathbf{R}_{10}, \mathbf{R}_{12}, \mathbf{R}_{14}, \mathbf{R}_{16}, \mathbf{R}_{18})$

S = solution; P = precipitate; INS = insoluble.

	Gelators		SAD-4 and R-NH ₂ in 1:2				
	Solvents	4 ·10	4·12	4·14	4 ·16	4 ·18	
1	Tetralin	2.04	1.45	С	С	С	
2	Benzene	1.22	2.79	С	С	С	
3	Toluene	3.38	2.06	INS	С	С	
4	o-Xylene	2.24	6.9	INS	С	С	
5	m-xylene	2.29	2.48	С	INS	INS	
6	p-xylene	2.29	2.48	INS	INS	INS	
7	Mesitylene	2.62	2.83	INS	INS	INS	
8	Nitrobenzene	1.0	0.96	С	С	С	
9	Chlorobenzene	1.49	1.17	С	С	С	
10	o-Dichlorobenzene	1.27	0.89	С	С	С	
11	H ₂ O	S	Р	Р	Р	Р	
12	ethyl acetate	С	INS	INS	INS	INS	
13	Ethanol	S	Р	Р	Р	Р	
14	n-amyl alcohol	S	INS	INS	INS	INS	
15	Methanol	S	Р	Р	Р	Р	
16	Chloroform	INS	INS	INS	INS	INS	
17	Isopropyl ether	С	INS	INS	INS	INS	
18	Cyclohexane	С	INS	INS	INS	INS	
19	DMSO	Р	Р	Р	Р	Р	
20	Petroleum ether	С	INS	INS	INS	INS	
21	Ethylene glycol	С	INS	INS	INS	INS	
22	Methylene Chloride	INS	INS	INS	INS	INS	

Table S3 Gelation data of 4.10, 4.12, 4.14, 4.16, and 4.18

	Gelators		SAD-6 and R-NH ₂ in 1:2			
S	Solvents	6·10	6.12	6.14	6.16	6.18
1	Tetralin	С	1.12	1.35	С	С
2	Benzene	С	1.16	1.6	С	С
3	Toluene	С	1.25	1.76	С	С
4	o-Xylene	2.33	1.19	1.73	С	С
5	m-xylene	С	1.26	1.7	INS	INS
6	p-xylene	S	С	2.48	INS	INS
7	Mesitylene	С	1.25	2.61	INS	INS
8	Nitrobenzene	С	0.77	0.81	С	С
9	Chlorobenzene	С	0.85	1.1	С	С
10	o-Dichlorobenzene	С	0.72	0.94	С	С
11	H_2O	S	Р	Р	Р	Р
12	ethyl acetate	INS	INS	INS	INS	INS
13	Ethanol	S	Р	Р	Р	Р
14	n-amyl alcohol	S	INS	INS	INS	INS
15	Methanol	S	Р	Р	Р	Р
16	Chloroform	С	INS	INS	INS	INS
17	Isopropyl ether	INS	INS	INS	INS	INS
18	Cyclohexane	INS	INS	INS	INS	INS
19	DMSO	С	Р	Р	Р	Р
20	Petroleum ether	INS	INS	INS	INS	INS
21	Ethylene glycol	С	INS	INS	INS	INS
22	Methylene Chloride	INS	INS	INS	INS	INS

Table S4 Gelation data of 6.10, 6.12, 6.14, 6.16, and 6.18

	Gelators		SAD-8 and R-NH ₂ in 1:2				
	Solvents	8 ·10	8 ·12	8 ·14	8 ·16	8 ·18	
1	Tetralin	С	1.33	1.01	С	С	
2	Benzene	С	1.96	1.23	С	С	
3	Toluene	С	2.64	1.56	С	С	
4	o-Xylene	С	1.47	1.31	С	С	
5	m-xylene	С	2.0	1.75	INS	INS	
6	p-xylene	S	2.22	1.75	INS	INS	
7	Mesitylene	С	1.43	1.61	INS	INS	
8	Nitrobenzene	С	1.03	0.63	С	С	
9	Chlorobenzene	С	1.56	1.48	С	С	
10	o-Dichlorobenzene	С	0.95	0.58	С	С	
11	H ₂ O	S	Р	Р	Р	Р	
12	ethyl acetate	INS	INS	INS	INS	INS	
13	Ethanol	S	Р	Р	Р	Р	
14	n-amyl alcohol	S	INS	INS	INS	INS	
15	Methanol	S	Р	Р	Р	Р	
16	Chloroform	С	INS	INS	INS	INS	
17	Isopropyl ether	INS	INS	INS	INS	INS	
18	Cyclohexane	INS	INS	INS	INS	INS	
19	DMSO	С	Р	Р	Р	Р	
20	Petroleum ether	INS	INS	INS	INS	INS	
21	Ethylene glycol	С	INS	INS	INS	INS	
22	Methylene Chloride	INS	INS	INS	INS	INS	

	Gelators SAD-10 and R-NH ₂ in 1:2					
	Q alassanta	10.10	10.12	10.14	10.16	10.18
	Solvents	~	~			
1	Tetralın	С	С	С	2.83	INS
2	Benzene	С	С	С	2.6	3.31
3	Toluene	С	С	С	3.15	6.12
4	o-Xylene	С	С	INS	2.77	6.03
5	m-xylene	С	С	INS	2.81	6.16
6	p-xylene	S	С	INS	2.81	6.16
7	Mesitylene	С	С	С	2.64	3.36
8	Nitrobenzene	С	С	1.20	1.20	1.06
9	Chlorobenzene	С	С	С	2.19	1.6
10	o-Dichlorobenzene	С	С	С	1.39	3.35
11	H ₂ O	S	S	Р	Р	Р
12	ethyl acetate	INS	INS	INS	INS	INS
13	Ethanol	S	Р	Р	Р	Р
14	n-amyl alcohol	S	INS	INS	INS	INS
15	Methanol	S	Р	Р	Р	Р
16	Chloroform	С	INS	INS	INS	INS
17	Isopropyl ether	INS	INS	INS	INS	INS
18	Cyclohexane	INS	INS	INS	INS	INS
19	DMSO	С	Р	Р	Р	Р
20	Petroleum ether	INS	INS	INS	INS	INS
21	Ethylene glycol	С	INS	INS	INS	INS
22	Methylene Chloride	INS	INS	INS	INS	INS

Table S6 Gelation data of 10.10, 10.12, 10.14, 10.16, and 10.18

	Compounds			Acids		
S	olvents	Dodecanoic acid	Tetradeconi c acid	Palmitic acid	Succinic acid	Sebacic acid
1	Tetralin	S	S	S	Р	Р
2	Benzene	S	S	S	Р	Р
3	Toluene	S	S	S	Р	Р
4	o-Xylene	S	S	S	Р	Р
5	m-xylene	S	S	S	Р	Р
6	p-xylene	S	S	S	Р	Р
7	Mesitylene	S	S	S	Р	Р
8	Nitrobenzene	S	S	S	Р	Р
9	Chlorobenzene	S	S	S	Р	Р
10	o-Dichlorobenzene	S	S	S	Р	Р
11	H_2O	INS	INS	INS	Р	Р
12	ethyl acetate	S	S	S	S	S
13	Ethanol	S	S	S	S	S
14	n-amyl alcohol	S	S	S	S	S
15	Methanol	S	S	S	S	S
16	Chloroform	S	S	S	Р	Р
17	Isopropyl ether	S	S	S	Р	Р
18	Cyclohexane	S	S	S	Р	Р
19	DMSO	S	S	S	S	S
20	Petroleum ether	S	S	S	Р	Р
21	Ethylene glycol	Р	Р	Р	S	S
22	Methylene Chloride	S	S	S	Р	Р

Table S7 Gelation data of fatty acids (dodecanoic acid, tetradeconic acid, palmitic acid) and dicarboxylic acids (succinic acid, sebacic acid).

S = solution; P = precipitate; INS = insoluble.

Gelators		SAD-n and					
Fatty acids	6.12	6.14	8 ·12	8 ·14			
Dodecanoic acid	CG	CG	CG	CG			
Tetradeconic acid	CG	CG	CG	CG			
Palmitic acid	CG	CG	CG	CG			
CG = conventional gel							

Table S8 Gelation data of conventional gels transformed from heat-set gels by addition of fatty acids.

Table S9 Gelation data of thermo-irreversible gel gels transformed from het-set gels by addition of dicarboxylic acids.

Gelators						
Dicarboxylic acids	6.12	6.14	8 ·12	8 ·14		
Succinic acid	SHG	SHG	SHG	SHG		
Sebacic acid	SHG	SHG	SHG	SHG		
SAD-6	SHG	SHG	SHG	SHG		
SAD-8	SHG	SHG	SHG	SHG		
SAD-10	SHG	SHG	SHG	SHG		
SHG = thermo-irreversible gel						

3) Obtaining of xerogels

The xerogels of heat-set gels were obtained by drying the gels in a vacuum oven at a temperature over Tgel for 24 h.

4) Growth of single crystal of 6•14

0.5 mmol (0.158 g) SAD-6 and 1.0 mmol (0.214 g) R_{14} -NH₂ were dissolved in 20 mL mixed solution of ethanol and distilled water (v/v = 1:1). The mixed solution was allowed to stay at ambient temperature. After three weeks, colorless crystals suitable for single-crystal X-ray diffraction analysis were obtained by filtration.

5) Date of differential scanning calorimetry (DSC)

Fig. S1 Differential scanning calorimetry (DSC) thermograms for 6.14 composite in tetralin (1.88 wt.%).

6) FT-IR results

Fig. S2 FT-IR spectra. a, xerogel of 6.14 with dodecanoic acid in 1:2:3 molar ratio. b, xerogel of 6.14 with SAD-6 in 1:2:1 molar ratio.

Fig. S3 SA-XRD patterns of 6.14 xerogel

Fig. S4 SA-XRD patterns of heat-set gels in tetralin. a, 4·12. b, 6·12. c, 8·14. d, 10·16. SA-XRD patterns reveal that the *d*-spacing of the heat-set gel of 4·12, 6·12, 8·14 and 10·16 are 39.339, 41.213, 46.445 and 48.387 Å, respectively. The evaluated molecular length ($L_2 = R_n$ -NH₂ + SAD-n + R_n -NH₂) by optimized CPK model are 51.506,54.376, 62.565 and 70.131 Å, respectively.

8) Crystal structure

Fig. S5 Crystal structure of 6·14 (Symmetric codes: i = 1 + x, y, z; ii = -1 + x, y, z; iii = 2 + x, 1 + y, z; iv = 1 + x, 1 + y, z; v = 2 + x, 2 + y, z; vi = -1 + x, -1 + y, z).

Fig. S6 IR spectra of 6.14 (a) xerogel, (b) crystals.

