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A.  Fabrication of cylindrical nanopost arrays 

Nanopost arrays were fabricated using the techniques described by Choi et al.1 ZEP520A 

photoresist was spin-coated on a 4 in. p-type silicon wafer <100> at 6000 rpm for 45 s and baked 

at 180 °C for 2 min. Square arrays with 0.5 µm circles were produced by e-beam lithography 

(JBX-9300 FS). The post patterns were then developed in xylene for 30 s, rinsed with isopropyl 

alcohol (IPA), and dried with N2. Chromium (15 nm) was deposited using a dual gun electron 

beam evaporation vacuum chamber (Thermionics, Port Townshend, WA) at a metal evaporation 

rate of 1 Å/s. The wafer was sonicated in acetone for 10 min to lift off the photoresist and ensure 

that chromium was only present on the etched surface. Using photolithography, microfluidic 

channels were fabricated around the nanoposts. Wafers were spin-coated with a negative tone 

photoresist, NFR016D255cP (JSR Micro Inc., Sunnyvale, CA), at 6000 rpm for 45 s. After 

baking at 90°C for 90 s, the wafers were aligned to the microchannel optical mask and exposed 

to ultraviolet light for 3 s. After a post-exposure bake at 115°C for 90 s, the resist was developed 

in MICROPOSIT MF CD-26 Developer (Shipley Company, Marlboro, MA) for 30 s. After 

rinsing with DI water and drying with N2, the wafer was heated on a hot plate at 180 °C for 3 

min. The wafers were then cryogenically etched using SF6 and O2 at -110°C using an Oxford 

Plasmalab system 100 to produce 10-µm high nanopost arrays. Finally, a uniform 10 nm thick 

SiO2 layer was deposited by atomic layer deposition. 
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Figure S1. Scanning electron micrographs of the 500 nm-diameter cylindrical post arrays with post spacings of (a) 
0.4 µm, (b) 0.8 µm, and (c) 1.0 µm. S denotes the spacing between posts while P denotes the diagonal of the square 
post array. 

B. Dynamic Differential Microscopy 

In differential dynamic microscopy, developed by Cerbino and coworkers2, 3 a time series of 

optical microscopy images is analyzed in Fourier space; this method can quantify the dynamics 

of particles that are too small to be directly resolved by an optical microscope. Differential 

images were obtained by subtracting microscopy images taken at a fixed time interval Δt. This 

subtraction eliminated any time-independent signals and revealed a small-scale signal associated 

with the motion of the particles. The intensity of this signal increased with Δt:  

D(x,y;Δt) = I(x,y;t + Δt) − I(x,y;t) （1） 

where I(x,y;t) is the intensity at position (x,y) measured at time t. A 2D fast Fourier transform of 

the differential images was performed to obtain the Fourier power spectrum, D(ux,uy;Δt). If the 

dynamics are isotropic, the 2-D power spectrum can be azimuthally averaged to obtain the image 

structure function, D(q, Δt), where 𝑞𝑞 = 2𝜋𝜋 𝑢𝑢 + 𝑢𝑢  .  To determine whether the dynamics were 

isotropic, azimuthal averaging was done along arc lengths of ±15° orientated parallel to and 

perpendicular to the nanoposts, as shown in Figures S.2 – S.4.  The excellent agreement between 



4 
	
  

all image structure functions confirmed that the dynamics of nanoparticles in these arrays were 

isotropic.  

 

Figure S2. Image structure function D(q, Δt) as a function of delay time Δt at q = 1 µm-1 for 400 nm diameter 
particles (a) diffusing freely and in two different post arrays: (b) S = 1.0 µm and (c) S = 0.8 µm. Black triangles 
represent particles travelling between posts, red diamonds represent particles diffusing toward the posts, and blue 
circles represent the isotropic average of the particles. 

 

Figure S3. Image structure function D(q, Δt) as a function of delay time Δt at q = 1 µm-1 for 300 nm diameter 
particles (a) diffusing freely and in three different post arrays: (b) S = 1.0 µm (c) S = 0.8 µm, and (d) S = 0.4 µm. 
Black triangles represent particles traveling between posts, red diamonds represent particles diffusing toward the 
posts, and blue circles represent the isotropic average of the particles. 
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Figure S4. Image structure function D(q, Δt) as a function of delay time Δt at q = 1 µm-1 for 200 nm diameter 
particles (a) diffusing freely and in two different post arrays: (b) S = 1.0 µm and (c) S = 0.8 µm. Black triangles 
represent particles traveling between posts, red triangles represent particles diffusing toward the posts, and blue 
circles represent the isotropic average of the particles. 

The image structure function (ISF) of particles diffusing in bulk could be fitted using a simple 

exponential model,  
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where A(q) is the signal prefactor, which depends on the scattering properties of the particles, the 

light source and the system optics; B(q) is the background noise of the system; and τ(q) is the q-

dependent relaxation time. Non-linear least-squares fitting was performed using the Levenberg-

Marquardt algorithm in Origin software (OriginLab, Northampton, MA). Three parameters were 

extracted from the fitting: A(q), B(q), and τ(q). The particle diffusivity Dm was then calculated 

from the slope of τ(q) versus q2 as Dm = 1/τ(q)q2. A(q) and B(q) are shown for representative 

experiments in Figures S5 – S7; we note that B(q) is nearly constant over all wave vectors 

accessed in these experiments, despite the presence of the posts. 
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Figure S5. Fitting parameters A(q) (black squares) and B(q) (red circles) as a function of the magnitude of the wave 
vector q (in µm-1) of 200 nm particles a.) diffusing freely and in post arrays with b.) S=0.8 µm, c.) S=1.0 µm. 

 

Figure S6. Fitting parameters A(q) (black squares) and B(q) )  (red circles) as a function of the magnitude of the 
wave vector q (in µm-1) of 300 nm particles a.) diffusing freely and in post arrays with b.) S=0.8 µm, c.) S=1.0 µm, 
and d.) S=2.0 µm. 

 

Figure S7. Fitting parameters A(q) (black squares) and B(q)  (red circles) as a function of the magnitude of the wave 
vector q (in µm-1) of 200 nm particles a.) diffusing freely and in post arrays with b.) S=0.8 µm, c.) S=1.0 µm. 

 

As shown in Figure S8, the ISF of 400 nm particles diffusing in bulk with wave vectors 

below 3 µm-1 could be fitted using Equation 2. Figures S9 and S19 show that Equation 2 could 

also be applied to fit the ISFs of freely diffusing 300 and 200 nm particles, respectively. 
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Figure S8. Image structure function D(q,Δt) of 400 nm particles diffusing in bulk at different wave vectors: (a) 0.5 
µm-1, (b) 2.0 µm-1, (c) 2.5 µm-1, and (d) 3.0 µm-1. 
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Figure S9. Image structure function D(q,Δt) of 300 nm particles diffusing in bulk at different wave vectors: (a) 0.5 
µm-1, (b) 2.0 µm-1, (c) 2.5 µm-1, and (d) 3.0 µm-1. 
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Figure S10. Image structure function D(q,Δt) of 200 nm particles diffusing in bulk at different wave vectors: (a) 0.5 
µm-1, (b) 1.0 µm-1, (c) 1.5 µm-1, and (d) 2.0 µm-1. 

The dynamics of particles diffusing in confined nanopost arrays, however, cannot be 

fitted using Equation 2. Instead, these dynamics were fitted using a stretched exponential model, 
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where r(q) is the stretching exponent.  

We found that r(q) was nearly independent of q at wave vectors below 2 µm-1. At higher 

wave vectors, r(q) decreased as q was increased. To test the robustness of the fitting equation, the 

ISFs of nanoparticles diffusing in nanoposts were fitted multiple times with different parameters. 
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The first fitting allowed r(q) to vary from 0 to 1 and an average value was obtained from the low 

q-range where r(q) is nearly constant. The ISFs were fitted again with this average r(q). Figures 

S11 – S17 show the ISFs of nanoparticles at different wave vectors fitted using different values 

of r(q). 

The ISFs of 400 nm particles diffusing in post arrays with S=1 µm were fitted using an 

r(q) of 0.92 from wave vectors 0.5 to 2.0 µm-1. At q = 2.5 µm-1, r(q) decreased to 0.83 and 

further decreased to 0.77 at q = 3.0 µm-1 (Figure S11). We observed that r(q) had a significant 

effect on fitting at q values less than 2 µm-1. Figure S12 shows that 400 nm particles diffusing in 

post arrays with S=0.8 µm follow the same trend.  
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Figure S11. Image structure function D(q,Δt) of 400 nm particles diffusing in post arrays with S=1 µm fitted with 
different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 2.5 µm-1, and (d) 3 µm-1. 

 

Figure S12. Image structure function D(q,Δt) of 400 nm particles diffusing diffusing in post arrays with S=0.8 µm 
fitted with different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 2.5 µm-1, and 
(d) 3 µm-1. 

 

 For 300 nm particles diffusing in post arrays with S=1 µm, an average r(q) value of 0.92 

was extracted from the ISFs from wave vectors 0.5 to 2 µm-1. Above that range the r(q) values 

decreased as q increased until a r(q) of 0.63 was derived from q =  3 µm-1. Figure S13 shows that 

changing the r(q) value had a significant effect on the ISF fitting over the q range of 0.5 – 3 µm-

1. As shown in Figures S14 and S15, this was not the case for 300 nm particles diffusing in post 
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arrays with S=0.8 and 0.4 µm, respectively. In those systems, the fitting was sensitive to r(q) at 

wave vectors less than 2 µm-1, but became less sensitive at higher wave vectors.   

 

 
Figure S13. Image structure function D(q,Δt) of 300 nm particles diffusing in post arrays with S=1 µm fitted with 
different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 2.5 µm-1, and (d) 3 µm-1. 
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Figure S14. Image structure function D(q,Δt) of 300 nm particles diffusing in post arrays with S=0.8 µm fitted with 
different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 2.5 µm-1, and (d) 3 µm-1. 
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Figure S15. Image structure function D(q,Δt) of 300 nm particles diffusing in post arrays with S=0.4 µm fitted with 
different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 2.5 µm-1, and (d) 3 µm-1. 

The ISFs of 200 nm particles diffusing in post arrays with S=1 µm and S=0.8 µm are 

shown in Figures S16 and S17, respectively. The average r(q) could be used to fit ISFs for wave 

vectors ranging from 0.5 to 2.0 µm-1. 
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Figure S16. Image structure function D(q,Δt) of 200 nm particles diffusing in post arrays with S=1 µm fitted with 
different stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 1.5 µm-1, and (d) 2 µm-1. 
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Figure S17. Image structure D(q,Δt) of 200 nm particles diffusing in post arrays with S=0.8 µm fitted with different 
stretching exponents r(q) at different wave vectors: (a) 0.5 µm-1, (b) 1.0 µm-1, (c) 1.5 µm-1, and (d) 2 µm-1. 

Table S1. Wave vector q at which the stretching exponent r(q) begins to deviate from its small-q average for the 
different particle sizes and post spacings investigated in this study. 

Nanoparticle diameter 
[nm] 

q	
  value	
  for which	
  𝐫𝐫 𝐪𝐪 < 𝟎𝟎. 𝟗𝟗𝟗𝟗 𝐫𝐫(𝐪𝐪)  [µµm-1] 

Post spacing [nm] 

400 800 1000 

300 2.0 ± 0.2 2.2 ± 0.2 2.0 ± 0.2 

400 - 2.6 ± 0.2 2.4 ± 0.2 
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Table S1 shows the approximate wave vector at which r(q) (Figure 4 in the main 

manuscript) begins to deviate from the average value 𝑟𝑟(𝑞𝑞) . For the different post spacings 

explored in this study and for the two sizes of particles for which we observe a deviation, the 

deviation wave vector ranges from 2.0 – 2.6 µm-1, corresponding to length scales of 2.4 – 3.1 

µm. Given the limited range of data, no systematic understanding is possible. 

The relaxation time τ(q) did not significantly depend on the value of r(q) used to fit the 

ISFs. Figures S18 – S21 show that fixing r(q) to its average value or allowing r(q) to vary 

produced fits with equivalent τ(q) values within the errors associated with the measurements.  

 

 

Figure S18. Relaxation time τ(q) (in seconds) as a function of the magnitude of the wave vector q (in µm-1) for 400 
nm nanoparticles diffusing in post arrays with (a) S=1 µm, with r(q) fixed at 0.92 and r(q) varied from 0.77 – 0.92 
and (b) S=0.8 µm, with r(q) fixed at 0.90 and r(q) varied from 0.76 – 0.90. 
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Figure S19. Relaxation time τ(q) (in seconds) as a function of the magnitude of the wave vector q (in µm-1) 300 nm 
nanoparticles diffusing in post arrays with (a) S=1 µm, with r(q) fixed at 0.92 and r(q) varied from 0.63 – 0.92, (b) 
S=0.8 µm, with r(q) fixed at 0.89 and r(q) varied from 0.74 – 0.89, and (c) S=0.4 µm, with r(q) fixed at 0.73 and r(q) 
svaried from 0.56 – 0.73. 

 

 

Figure S20. Relaxation time τ(q) (in seconds) as a function of the magnitude of the wave vector q (in µm-1) 200 nm 
nanoparticles diffusing in post arrays with (a) S=1 µm, with r(q) fixed at 0.95 and r(q) varied from 0.89 – 0.95, (b) 
S=0.8 µm, with r(q) fixed at 0.92 and r(q) varied from 0.86 – 0.92. 

  

 Particle trajectories obtained using a single particle-tracking (SPT) algorithm were 

analyzed to validate the diffusivities obtained using DDM. Centroids were located to within 40 

nm and particle positions were linked into trajectories. The mean square displacement (MSD) of 

the particles was calculated from the trajectories using Equation 4 and the probability 

distributions of particle displacements were computed using Equation 5. 
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Here C1 and C2 are prefactors and g(Δt) and λ are the decay lengths for stretched and simple 

Gaussians, respectively. In our previous study, we found that the displacement distributions for 

nanoparticles deviated from a simple Gaussian and were instead fitted with a sum of a simple 

and stretched Gaussian model.4 To fit these distributions, β was set to 2r(q) (derived from DDM) 

and λ was set to a constant width.  

The MSD of the 400 nm particles diffusing freely and through the nanopost arrays are 

shown in Figure S21. The MSDs exhibited the same trend with increasing confinement, 

consistent with the slowing of dynamics observed in DDM. The diffusion coefficients extracted 

from the MSD were identical to those obtained using DDM within the errors of each 

measurement, as shown in Table S1. 
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Figure S21. Mean-squared displacement (MSD) as a function of delay time Δt for 400 nm nanoparticles diffusing 
freely (black circles) and in post arrays with S= 0.8 µm, ζ=0.48 (orange triangles) and S=1.0 µm, ζ=0.37 (blue 
diamonds). The MSD scales linearly with Δt across the range of delay times probed. 

 

 The one-dimensional distributions of displacements (Gs(Δx, Δt)) fitted to Equation 5 are 

shown in Figure S22. The decay lengths extracted from the fits decreased as particles were 

increasingly confined, as shown in Figure S23. This decay length represented the average 

characteristic length scale of the processes contributing to the stretched Gaussian distribution. 

The relative decay lengths (γ/ γ0), where γ0 is the decay length of freely diffusing particles, are 

shown in Table S2. 
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Figure S22. Probability distributions of particle displacements Gs(Δx, Δt) for 400 nm particles diffusing freely and 
in post arrays with S=0.8 µm, ζ=0.48, and S=1.0 µm, ζ=0.37, at delay times Δt of (a) 0.2 s, (b) 0.4 s, (c) 0.6 s and 
(d) 0.8 s, respectively. Lines indicate fits to Equation 5. 

 

 
Figure S23. Decay length γ(Δt) as a function of delay time Δt for 400 nm particles diffusing freely (black circles) 
and in post arrays with S=0.8 µm (orange triangles), ζ=0.48, and S=1.0 µm (blue diamonds), ζ=0.37, respectively.  
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Table S2. Relative diffusivities, stretching exponents, and relative decay lengths of 400 nm particles diffusing 
through post arrays measured using DDM and using particle tracking. 

 
 
Post Spacing 

DDM Particle Tracking 

Relative 
Diffusion 
(D/D0) 

Stretching 
Exponent 
(r(q)) 

Relative 
Diffusion 
(D/D0) 

Relative Decay 
Length 
((γγ /  γγ0) 

S = 1 µm 0.54 ± 0.03 0.90 ± 0.01 0.55 ± 0.03 0.71 ± 0.03 

S = 0.8 µm 0.47 ± 0.03 0.87 ± 0.04 0.46± 0.03 0.63 ± 0.03 
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