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Appendix A: Details of the minimum assignment algorithm

Consider two M × M matrices A1 and A2 with elements A1,2
ll′ ∈ {p, s, x} defining the

relative position of links l and l′. The aim is to find a one-to-one assignment k(l) of the

links from l→ k minimizing the Hamming distance D(A1,A2) =
∑

l<l′(1− δA1
ll′ ,A

2
kk′

). Here,

to shorten the notation, we use k, k′ for k(l), k(l′).

We start from the local marginals µl(k) of the probability measure µ(k) ∝ e−βD(A1,A2) of

the assignments written in the Bethe approximation for a finite β [1],

µl(k) ∝
∏
l′ 6=l

(∑
k′ 6=k

e
−β(1−δ

A1
ll′

,A2
kk′

)
µl′→l(k

′)

)
. (A1)

The cavity marginals µl′→l(k
′) give the probability of assigning l′ → k′ in the absence of link

l. The recursive equations governing these cavity marginals are called the belief propagation

equations [1, 2],

µl′→l(k
′) ∝

∏
l′′ 6=l,l′

(∑
k′′ 6=k′

e
−β(1−δ

A1
l′l′′

,A2
k′k′′

)
µl′′→l′(k

′′)

)
. (A2)

We can solve the equations by iteration starting from a random initial condition.

But we are interested in the limit β →∞ of the equations concentrating on the optimal

assignments minimizing D(A1,A2). Assuming the scaling µl→l′(k) = e−βhl→l′ (k) for the cavity

marginals, the limit β →∞ of the BP equations read

hl′→l(k
′) =

∑
l′′ 6=l,l′

min
k′′ 6=k′

{
(1− δA1

l′l′′ ,A
2
k′k′′

) + hl′′→l′(k
′′)
}
− Cl′→l. (A3)

Here Cl′→l is a constant to make mink′ hl′→l(k
′) = 0. These equations are called minsum

equations [2].

We use the above equations in a reinforcement algorithm to fix smoothly the assignment

variables [3]. To this end, we use the information in the local marginals µl(k) = e−βhl(k) to

increase slowly an external field acting on the variables. The aim is to concentrate more and

more the cavity and local marginals on a minimum assignment as the algorithm proceeds.

More precisely, we start from random initial messages h0l (k), h0l→l′(k), and in each step we

update the message in the following way:

ht+1
l→l′(k) = ηl(k) + r(t)htl(k) +

∑
l′′ 6=l,l′

min
k′′ 6=k

{
(1− δA1

ll′′ ,A
2
kk′′

) + htl′′→l(k
′′)
}
− Cl→l′ . (A4)
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In the same way, we update the local messages

ht+1
l (k) = ηl(k) + r(t)htl(k) +

∑
l′′ 6=l

min
k′′ 6=k

{
(1− δA1

ll′′ ,A
2
kk′′

) + htl′′→l(k
′′)
}
− Cl. (A5)

Here r(t) is the reinforcement parameter; it is zero at the beginning and increases slowly

by time as r(t + 1) = r(t) + δr, for a small δr ' 0.01. In addition, we introduced a small

noise ηl(k) to the equations to reduce the number of possible minimum assignments. In each

iteration one updates all the local and cavity messages selected in a random sequential way,

according to the above equations. In the end, one obtains an assignment by looking at the

local messages; that is l→ k = arg minhtl(k).

Appendix B: Ordering statistics of the local changes

Consider two link configurations L0, LT connected by a sequence of local changes, that is

LT = uT · · ·u1L0. To be specific, we assume the us are local changes (LC) of type II, where

u is an elementary permutation of the neighboring endpoints (iu, iu + 1). There could be

different orderings of the LCs connecting the same boundary configurations. The question

is how these different orderings affect on a macroscopic behavior (phenotype) of the chain,

for example a monotonically increasing (fitness) function of the Np,s,x.

For simplicity, let us ignore the link labels and work with the connectivity patterns of

the endpoints C. We will also focus on the simple case of two local changes u,v of type

II. The local change u commutes with v in the context of C if vuC = uvC. Note that the

transformations are reversible, that is from C′ = vuC we obtain C = uvC′. The definitions

can readily be extended to link configurations with distinguishable links as well.

The two local changes u,v may involve two, three, or four distinct links; we will not

consider permutation of neighboring endpoints that belong to a single link, because it has

no effect. In table I we summarize the possible effects of two commutative local changes

on a contact configuration, considering only the nontrivial case of three links. One can

easily construct the other cases with two or four links, following the above rules. Note that

each transformation in the table can also happen in the reverse direction. As the table

shows, the changes in numbers Np,s,x in the two paths are correlated depending on how

that quantity changes form C to C′. In particular, when Nq increases (or decreases) the

corresponding changes in the two paths do not have different signs; a LC-II only changes
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pNpsNsxNx Np Ns Nx pNpsNsxNx Np Ns Nx

p3 → (p2x, p2x)→ px2 (↓, ↓) (−,−) (↑, ↑) s3 → (s2x, s2x)→ sx2 (−,−) (↓, ↓) (↑, ↑)

x3 → (px2, sx2)→ psx (↑,−) (−, ↑) (↓, ↓) x3 → (px2, px2)→ p2x (↑, ↑) (−,−) (↓, ↓)

ps2 → (psx, s2x)→ sx2 (−, ↓) (↓,−) (↑, ↑) px2 → (p2x, psx)→ p2s (↑,−) (−, ↑) (↓, ↓)

px2 → (psx, x3)→ sx2 (−, ↓) (↑,−) (↓, ↑) px2 → (p2x, x3)→ px2 (↑, ↓) (−,−) (↓, ↑)

p2s→ (psx, psx)→ sx2 (↓, ↓) (−,−) (↑, ↑) p2s→ (psx, p2x)→ px2 (↓,−) (−, ↓) (↑, ↑)

p2x→ (px2, p2s)→ psx (↓,−) (−, ↑) (↑, ↓) p2x→ (px2, p3)→ p2x (↓, ↑) (−,−) (↑, ↓)

s2x→ (ps2, sx2)→ psx (↑,−) (−, ↓) (↓, ↑) s2x→ (s3, sx2)→ s2x (−,−) (↑, ↓) (↓, ↑)

psx→ (sx2, p2s)→ psx (↓, ↑) (−,−) (↑, ↓)

TABLE I. The set of distinct transformations C → (uC,vC) → C′ = uvC = vuC obtained by

two commutative local changes of type II applied on three links. The arrows in each column show

the change in the numbers Np,s,x: positive (↑) or negative (↓). The first (second) arrow in the

parenthesis corresponds to the first (second) transition. Here pNpsNsxNx shows a configuration of

Nq contact pairs of type q = p, s, x.

the state of two links from x to (p,s), or from (p,s) to x. This means that in a LC-II we

have δNp,s = −δNx = ±1, and two LC-II can at most change Np,s,x by two. Consequently, if

Nq increases (decreases), the changes δNq resulted by the two LC-II can not have different

signs, because they can not give the expected total variation in Nq.

Appendix C: Details of the minimum evolution algorithm

Let us start from the dynamical partition function

Z(L0 → LT ) =
∑

u(1),u(2),...,u(T )

e−βEδL(u(1),u(2),...,u(T )|L0),LT , (C1)

where Lt = L(u(1),u(2), . . . ,u(t)|L0) is the link configuration at time step t, and u(t) defines

the position of the possible local changes. In the following, we assume the local changes are

of type II. Here E =
∑T−1

t=1 E(t) +
∑T

t=1E(t − 1, t) with E(t) = −Np(t), and E(t − 1, t) =

−
∑

q<q′ λq→q′Nq→q′(t− 1, t) for q = p, s, x. We recall that a link configuration is defined by

the endpoints of all the links, and any two links have different endpoints. A local-change
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configuration u(t) = {ull′(t) = 0, 1|
∑

l′ 6=l ull′(t) ≤ 1} is a matching of neighboring links with

adjacent endpoints along the contact chain.

We solve the above problem by a dynamic programming (message-passing) algorithm:

Define the cavity messages µt→t+1(Lt) and µt→t−1(Lt) as the probability of having link con-

figuration Lt in the absence of the energy terms and constraints imposed by the other part

of the system; i.e. the segment (t, T ] for the forward message µt→t+1, and [0, t) for the back-

ward message µt→t−1. From the above partition function we can easily write the equations

for these cavity marginals

µt→t+1(Lt) =
1

zt→t+1

e−βE(t)
∑
u(t)

δL(u(t)|Lt−1),Lte
−βE(t−1,t)µt−1→t(Lt−1), (C2)

µt→t−1(Lt) =
1

zt→t−1
e−βE(t)

∑
u(t+1)

δL(u(t+1)|Lt),Lt+1e
−βE(t,t+1)µt+1→t(Lt+1). (C3)

Then the total marginal at time step t is given by

µt(Lt) =
1

zt
eβE(t)µt→t+1(Lt)µt→t−1(Lt). (C4)

The zt→t±1 and zt are normalization constants.

1. Approximating the messages

We represent a link configuration L by the set of endpoints el = (il, jl), and label the links

according to the order of their first endpoints. We also approximate the cavity messages by

a Bethe distribution

µt−1→t(L) ≈
∏
l

µlt−1→t(el)
∏
l<l′

µll
′
t−1→t(el, el′)

µlt−1→t(el)µ
l′
t−1→t(el′)

. (C5)

Using this structure for the cavity messages in the right hand side of the equations, we

obtain the equations for the two-link marginals µll
′
t→t+1(el, el′),

µll
′

t→t+1(el(t), el′(t)) ∝
∑

{el′′ (t)|l′′ 6=l,l′}

e−βE(t)
∑
u(t)

δL(u(t)|Lt−1),Lte
−βE(t−1,t)

×
∏
k

µkt−1→t(ek(t− 1))
∏
k<k′

µkk
′

t−1→t(ek(t− 1), ek′(t− 1))

µkt−1→t(ek(t− 1))µk
′
t−1→t(ek′(t− 1))

. (C6)

We compute the sum in the right hand side of the above equation using the Bethe

approximation [1]. To this end, we introduce auxiliary variables δl to see how the local
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changes affect link l. More precisely, given el(t) and δl we can recover the endpoints and

the link label ek(t − 1) in previous step. Note that δl takes a small number of values as

the number of possible local changes of type II are small; the endpoints and the label of a

link can at most change by ±1. The approximate two-link marginal µll
′
t→t+1(el, el′) can be

obtained by considering the constraints involving (el, el′), and by taking into account the

effect of the remaining degrees of freedom. The latter is provided by a new set of cavity

marginals νl→l′(el(t); δl;ull′(t)) giving the probability of indicated variables in the absence

of l′. Putting all together, we obtain

µll
′

t→t+1(el(t), el′(t)) ∝
∑

δl,δl′,ull′ (t)

wll′(el(t), el′(t); δl, δl
′;ull′(t))

× νl→l′(el(t); δl;ull′(t))νl′→l(el′(t); δl′;ull′(t)), (C7)

where we defined

wll′(el(t), el′(t); δl, δl
′;ull′(t)) = wl′→l(el(t), el′(t); δl, δl

′;ull′(t))µ
k
t−1→t(ek(t− 1)), (C8)

with

wl′→l(el(t), el′(t); δl, δl
′;ull′(t)) = I(δl, δl′, ull′(t)|el(t), el′(t))eβδq(el(t),el′ (t)),p

× eull′ (t)βλq(ek(t−1),ek′ (t−1))→q(el(t),el′ (t))µkk
′

t−1→t(ek′(t− 1)|ek(t− 1)). (C9)

Here I(δl, δl′, ull′(t)|el(t), el′(t)) is an indicator function to ensure that: (i) el(t) 6= el′(t), (ii)

the links are labeled from left to right according to their first endpoints, and (iii) to check

for the possibility of a local change given the endpoints and the δl, δl′, ull′(t). Moreover,

µkk
′

t−1→t(ek′(t− 1)|ek(t− 1)) = µkk
′

t−1→t(ek′(t− 1), ek(t− 1))/µkt−1→t(ek(t− 1)) is the conditional

probability of ek′(t − 1) given ek(t − 1), and q(el, el′) ∈ {p, s, x} depending on the link

endpoints.

The νl→l′(el(t); δl;ull′(t)) are determined by the following Bethe equations:

νl→l′(el(t); δl; 0) ∝
∏
l′′ 6=l,l′

 ∑
el′′ (t),δl

′′

wl′′→l(el(t), el′′(t); δl, δl
′′; 0)νl′′→l(el′′(t); δl

′′; 0)


+
∑
l′′ 6=l,l′

 ∑
el′′ (t),δl

′′

wl′′→l(el(t), el′′(t); δl, δl
′′; 1)νl′′→l(el′′(t); δl

′′; 1)


×

∏
l′′′ 6=l,l′,l′′

 ∑
el′′′ (t),δl

′′′

wl′′′→l(el(t), el′′′(t); δl, δl
′′′; 0)νl′′′→l(el′′′(t); δl

′′′; 0)

 , (C10)
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and,

νl→l′(el(t); δl; 1) ∝
∏
l′′ 6=l,l′

 ∑
el′′ (t),δl

′′

wl′′→l(el(t), el′′(t); δl, δl
′′; 0)νl′′→l(el′′(t); δl

′′; 0)

 . (C11)

Similarly, we obtain the cavity marginals µll
′
t→t−1(el(t), el′(t)), and finally the local

marginals read

µll
′

t (el(t), el′(t)) ∝ νl→l′(el(t))w̃ll′(el(t), el′(t))νl′→l(el′(t)), (C12)

where now

w̃ll′(el(t), el′(t)) = w̃l′→l(el(t), el′(t))µ
l
t→t+1(el(t))µ

l
t→t−1(el(t)), (C13)

with

w̃l′→l(el(t), el′(t)) = e
−βδq(el(t),el′ (t)),pµll

′

t→t+1(el′(t)|el(t))µll
′

t→t−1(el′(t)|el(t)), (C14)

and,

νl→l′(el(t)) ∝
∏
l′′ 6=l,l′

∑
el′′ (t)

w̃l′′→l(el(t), el′′(t))νl′′→l(el′′(t))

 . (C15)

Given the local marginals µlt(el(t)) and µll
′
t (el(t), el′(t)), an estimation of the entropy at

time step t can be obtained by the Bethe entropy [1],

S(t) =
1

M lnM

(∑
l<l′

∆Sll′ − (M − 2)
M∑
l=1

∆Sl

)
, (C16)

where

∆Sl = −
∑
el

µlt(el) lnµlt(el), (C17)

∆Sll′ = −
∑
el,el′

µll
′

t (el, el′) lnµll
′

t (el, el′). (C18)

In summary, from Eq. C7 we obtain the cavity marginals µll
′
t→t+1(el(t), el′(t)), and simi-

larly for µll
′
t→t−1(el(t), el′(t)). Then, Eq. C12 gives the local marginals µll

′
t (el(t), el′(t)), which

are used in Eq. C16 to compute the Bethe entropy.
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2. The zero temperature limit β →∞

To take the limit β →∞, we assume the above probability distributions scale as

µlt→t+1(el(t)) = e−βh
l
t→t+1(el(t)), (C19)

µll
′

t→t+1(el(t), el′(t)) = e−βh
ll′
t→t+1(el(t),el′ (t)), (C20)

and similarly for the messages from t to t− 1. In addition, we define

νl→l′(el(t); δl;ull′(t)) = e−βgl→l′ (el(t);δl;ull′ (t)), (C21)

νl→l′(el(t)) = e−βgl→l′ (el(t)). (C22)

Now the zero temperature (minsum) equations read [1, 2],

hll
′

t→t+1(el(t), el′(t)) = min
δl,δl′,ull′ (t):I

{
− ull′(t)λq(ek(t−1),ek′ (t−1))→q(el(t),el′ (t))

− δq(el(t),el′ (t)),p + hkk
′

t−1→t(ek(t− 1), ek′(t− 1))

+ gl→l′(el(t); δl;ull′(t)) + gl′→l(el′(t); δl
′;ull′(t))

}
, (C23)

where the minimum is subject to the constraints in I(δl, δl′, ull′(t)|el(t), el′(t)), and

gl→l′(el(t); δl; 0) = min
{
F 0
l→l′(el(t), δl), min

l′′ 6=l,l′
F l′′

l→l′(el(t), δl)
}
, (C24)

gl→l′(el(t); δl; 1) = F 0
l→l′(el(t), δl). (C25)

Here we defined

F 0
l→l′(el(t), δl) =

∑
l′′ 6=l,l′

f 0
l′′→l(el(t), δl), (C26)

F l′′

l→l′(el(t), δl) = f 1
l′′→l(el(t), δl) +

∑
l′′′ 6=l,l′,l′′

f 0
l′′′→l(el(t), δl), (C27)

(C28)

with

f 0
l′′→l(el(t), δl) = min

el′′ (t),δl
′′:I,ull′′ (t)=0

{
− δq(el(t),el′′ (t)),p

+ hkk
′′

t−1→t(ek(t− 1), ek′′(t− 1))− hkt−1→t(ek(t− 1)) + gl′′→l(el′′(t); δl
′′; 0)

}
, (C29)
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and

f 1
l′′→l(el(t), δl) = min

el′′ (t),δl
′′:I,ull′′ (t)=1

{
− λq(ek(t−1),ek′′ (t−1))→q(el(t),el′′ (t))

− δq(el(t),el′′ (t)),p

+ hkk
′′

t−1→t(ek(t− 1), ek′′(t− 1))− hkt−1→t(ek(t− 1)) + gl′′→l(el′′(t); δl
′′; 1)

}
. (C30)

Similarly we obtain the minsum messages hll
′
t→t−1(el(t), el′(t)), and finally the local mes-

sages read

hll
′

t (el(t), el′(t)) = δq(el(t),el′ (t)),p + hll
′

t→t+1(el′(t), el(t)) + hll
′

t→t−1(el′(t), el(t))

+ gl→l′(el(t)) + gl′→l(el′(t)), (C31)

and,

gl→l′(el(t)) =
∑
l′′ 6=l,l′

min
el′′ (t)6=el(t)

{
δq(el(t),el′′ (t)),p + hll

′′

t→t+1(el′′(t), el(t))

− hlt→t+1(el(t)) + hll
′′

t→t−1(el′′(t), el(t))− hlt→t−1(el(t)) + gl′′→l(el′′(t))
}
. (C32)

We use the above equations in a reinforcement algorithm to find a minimum evolution

path satisfying all the connectivity constraints. In a reinforcement algorithm, we use the

information in the local messages hll
′
t (el(t), el′(t)) to slowly polarize the cavity messages

hll
′
t→t±1(el(t), el′(t)) in the direction favored by the local messages, as we did in Appendix A

for the minimum distance algorithm.

In summary, the cavity messages hll
′
t→t+1(el(t), el′(t)) are obtained by solving Eq. C23

(similarly for hll
′
t→t−1(el(t), el′(t))). These messages are used in Eq. C31 to compute the

local messages hll
′
t (el(t), el′(t)) which are utilized in a reinforcement algorithm to find an

approximate optimal pathway.

Appendix D: More details and figures

In this section, we give more details of the numerical data and figures obtained in this

study.

We are interested in topological evolutions connecting two boundary contact configura-

tions (L0, LT ) by a sequence of local changes in the link arrangements. More specifically, we

look for optimal pathways of length T minimizing the energy functional E = −
∑T−1

t=1 Np(t) ≡

9



x3x3

x6

p3x3

FIG. 1. Examples of contact configurations of M = 6 links used as boundary configurations in the

minimum evolution algorithm: x6 (top), x3x3(middle), and p3x3 (bottom).

−Np, or E = −
∑T

t=1[Nx→p(t−1, t)+Nx→s(t−1, t)] ≡ −Nx→p,s. Here Np is the total number

of contact pairs of type p, and Nx→p,s gives the total number of contact pairs changed from

x to p, s during the evolution. Figure 1 shows some boundary contact configurations we use

in the following examples. For now, we assume the paths are simple with no loops, that is

each configuration in the path is visited only once.

Figure 2 shows the optimal pathways from the all-x (x6) configuration of M = 6 links

to the modular structure p3x3, following the local changes of type I. The results have been

obtained by an exact algorithm searching in the space of all paths connecting the two

boundary configurations. In Fig. 3, we compare the optimal paths connecting two random

link configurations of M = 5 links with local changes of type II and (II+M∗). In the latter

case, two link configurations are connected if they are related either by LC-II or LC-M∗.

Figure 4 displays an example of evolution with variable number of links from x4 to p2x2.

So far we have considered simple paths with no loops (also called off-pathways). The

off-pathways can localize the dynamics in a small region of the configuration space wasting

the evolution time. To escape from these traps, one may increase the path length T in the

hope of finding another path dominating the off-pathways, but probably another set of off-

pathways would appear. Another strategy is to perturb the system, for example, by adding

the transition rates Nx→p,s to the original energy function E = −
∑T−1

t=1 Np(t). However,

we observe that in this case the off-pathways are very robust. The reason is that the off-

pathways that maximize Np, maximize also the number of these transitions making the

above perturbations ineffective. Table II shows some examples of evolution in the presence

of off-pathways.
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FIG. 2. Evolution with local changes of type I: (top) Np,s,x(t), and (bottom) DI(t) of the inter-

mediate link configurations from the boundary configurations in the paths obtained by the exact

algorithm for M = 6 links. The paths connect the all-x (x6) configuration to a modular structure

of two components (p3x3) at shortest distance DI = 5. Besides the shortest path (a), we display

the path maximizing Np (b), and the path maximizing Nx→p,s for x6 → p3x3 (c) and p3x3 → x6

(d). Here t denotes the number of local changes of type I. The path degeneracy g and energy gap

∆ are: (g = 2,∆ = 2)a, (g = 8,∆ = 2)b, (g = 1,∆ = 4)c, (g = 1,∆ = 4)d.

T Np (g,∆) Noff
p (g,∆)off off-pathway

4 31 (1, 1) 31 (1, 1) -

6 58 (3, 1) 58 (3, 1) -

8 86 (24, 1) 86 (24, 1) -

10 113 (48, 1) 114 (24, 1) → loop

12 142 (48, 1) 143 (24, 1) → loop→ loop

14 169 (372, 1) 172 (120, 1) → loop→ loop→ loop

TABLE II. The total number of parallel two-links Np, degeneracy of the optimal paths g, and

energy gap ∆ obtained by an exhaustive search algorithm with local changes of type II. The

optimal paths maximizing Np connect tow boundary configurations of M = 6 links at shortest

distance DII = 4. We compare the cases with and without off-pathways. An off-pathway which

is a single loop appears for the first time at T = 10. By increasing the path length T , we observe

that more loops appear following each other.
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FIG. 3. Evolution with local changes of type II (a,b) and (II+M∗) (c,d): (top) Np,s,x(t), and

(bottom) distance D(t) of the intermediate link configurations from two random boundary config-

urations of M = 5 links. The boundary configurations have shortest distance DII = 3, and the

optimal paths are obtained by the exact algorithm maximizing Np. Besides the optimal shortest

paths (a,c), we display the results for a larger evolution time T = 9 (b,d). Here t denotes the

number of local changes of type II (a,b) or II+M∗ (c,d). The path degeneracy g and energy gap

∆ are: (g = 1,∆ = 14)a, (g = 78,∆ = 1)b, (g = 1,∆ = 2)c, (g = 64,∆ = 1)d.

Figure 5 display the results we obtained by the approximate minimum-evolution algo-

rithm for paths minimizing E = −
∑T−1

t=1 Np(t). In this figure, we show instances of evolution

paths between two random link configurations for a larger number of links M = 10 and steps

T = 9.
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FIG. 4. Evolution with local changes of type I+M± (a) and II+M± (b): (top) Np,s,x(t), and

(bottom) distance D(t) of the intermediate link configurations from the boundary configurations for

T = 10 steps. The boundary configurations (x6, p2x2) have different number of links with shortest

distances 4(a) and 6(b). The optimal paths are obtained by the exact algorithm maximizing Np.

Here t denotes the number of local changes of type I+M± (a) or II+M± (b). The path degeneracy

g and energy gap ∆ are: (g = 1,∆ = 1)a, (g = 3,∆ = 1)b.

13



11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=0

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=1

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=2

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=3

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=4

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=5

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=6

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=7

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=8

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=9

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=0

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=1

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=2

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=3

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=4

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=5

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=6

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=7

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=8

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=9

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=0

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=1

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=2

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=3

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=4

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=5

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=6

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=7

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=8

11
10

13

12

15

14

17

16

19

18

1
0

3

2

5

4

7

6

9

8

t=9

FIG. 5. Evolution paths of M = 10 links for T = 9 coarse-grained steps from a random link

configuration to another random configuration obtained by the approximate minimum evolution

algorithm minimizing E = −
∑T−1

t=1 Np(t). The endpoints on the chain start from i = 0 (at the

bottom of the circle) and increase to i = 2M − 1 in the counter-clockwise direction.
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