Electronic Supplementary Information

Exceptionally Tough and Notch-Insensitive Magnetic Hydrogels

Hussain Haider, Can Hui Yang, Wen Jiang Zheng, Jian Hai Yang, Mei Xiang Wang, Sen Yang, Miklós Zrínyi, Yoshihito Osada, Zhigang Suo, Qiqing Zhang, Jinxiong Zhou* and Yong Mei Chen*

Movie S1: Movement of a magnetic hydrogel in a plastic plate.

A rod-shaped magnetic hydrogel fast rolled in a plastic plate, (8.5 cm in diameter and

1.2 cm in height) containing deionized water under the remote guidance of a magnet.

Movie S2: The elongation of notch insensitive magnetic hydrogel with single edge

notch.

A sheet of magnetic hydrogel (length 35 mm, width 30 mm, thickness 2 mm) was cut at one center edge of the sample (notch length 1 cm). The sample was stretched at a velocity of 2 mm per minute. The stretch direction was perpendicular to the notch.

Movie S3: The elongation of notch insensitive magnetic hydrogel with multi notches at side edge.

A sheet of magnetic hydrogel was symmetrically cut at the two edges. Each edge has three notches (notch length 0.5 cm). The distance between every two notches was 2 mm. The sample was stretched at a velocity of 20 mm per minute. The stretch direction was perpendicular to the notches.

Movie S4: Magnetic catheter navigation.

A long flexible Fe_3O_4 @Fe-alginate/PAAm hydrogel (40 mm in length, 5 mm in diameter) with 20 wt% Fe_3O_4 nanoparticles was navigated in a calcium ions

crosslinked alginate/PAAm hydrogel tube (length 250 mm, inner diameter 7 mm) under the remote magnetic attraction of a NdFeB magnet.

Preparation of poly(2-acrylamido-2-methyl propyl sulfonic acid (PAMPS) hydrogel

We prepared 23.0 wt% solution of 2-acrylamido-2-methyl propyl sulfonic acid AMPS in water. Then added MBAA (4 wt %) and 2-oxoglutaric acid (0.9 wt %) with respect to the weight of AMPS. This transparent solution was transferred into glass mould and placed under UV light at 365 nm for 6 h for gelation. After that, PAMPS hydrogel was separeted from the glass mould.

Determination of fracture energy

The fracture energy of Fe₃O₄@Fe-alginate/PAAm hydrogels was measured and calculated using a method introduced by Rivlin and Thomas.^{1,2,} In brief, two samples (unnotched samples and notched sample) with same width a_0 , thickness b_0 were selected. First the unnotched sample was stretched to obtain the force displacement curve. The area beneath the curve gave the work done by the force, W(L). Then, the notched sample was stretched to measure the critical distance between the clamps, L_c , which was determined as the distance when the notch turned into a running crack and the sample ruptured. Finally, the fracture energy was calculated as $W(L_c)/a_0b_0$ with the dimension of J/m².

Distance between clamps, L (m)

Figure S1: Determination of fracture energy.

Fourier transform infrared spectroscopy (FTIR)

To investigate the presence of alginate to Fe_3O_4 nanoparticles, the dried Fe_3O_4 nanoparticles, alginate and alginate-coated Fe_3O_4 samples were tested using an infrared spectrometer (BRUKER TENSOR 27, Bruker). All the samples were subjected to analysis with a range of 4000-400 cm⁻¹.

Figure S2: FTIR of alginate-coated Fe_3O_4 nanoparticles, Fe_3O_4 nanoparticles, and alginate. The Fe_3O_4 nanoparticles possess the strong band at 569.20 cm⁻¹ in the low frequency region of (1000–500 cm⁻¹) which is due to iron oxide skeleton. In the spectrum of alginate-coated Fe_3O_4 , two bands were observed at 1626 cm⁻¹ and 1387 cm⁻¹.

Characterization of Fe₃O₄ nanoparticles

Figure S3: Size distribution of alginate-coated Fe₃O₄ nanoparticles of 1.0 wt% Fe₃O₄@Fe-alginate/PAAm hydrogel (left), and magnetic hysteresis loop of pure magnetic nanoparticles(right). TEM image shows that the diameter of over 80% nanoparticles is below 20 nm. Only less than 10% fell in the range of 21–40 nm or 41–60 nm respectively. 200 Fe₃O₄ nanoparticles were selected from each TEM images for the statistics. Error bars denote the standard deviation from at least three TEM images.

Figure S4: Compressive hysteresis curves of the tough magnetic Fe₃O₄@Fealginate/PAAm hydrogels when $W_{\text{Fe}_{3}\text{O}_{4}} = 2.0, 3.0, 4.0, 20.0 \text{ wt}\%$.

Compressive Tensile Magnetic Tensile Tensile Fracture Energy Strain Stress Hydrogel Strength Dissipation Modulus Energy [mm (Strain = [wt%] [J m⁻²] [kPa] $[kJ m^{-3}]$ [kPa] mm⁻¹] 0.9) [MPa] 4.9 ± 0.2 1.0 916.9 ± 53.3 11.4 ± 1.5 3445.0±140.3 199.5 ± 28.1 2814.0 ± 69.6 2.0 827.6±197.3 11.3 ± 2.7 $\textbf{2649.4} \pm \textbf{57.7}$ 201.0 ± 36.5 $\textbf{2782.1} \pm \textbf{69.6}$ 5.1 ± 0.1 712.1±136.8 9.9 ± 0.5 2598.2 ± 31.4 203.1 ± 25.4 2613.1±227.5 5.2 ± 0.3 3.0 4.0 571.4 ± 21.1 9.8 ± 0.5 $\textbf{2282.9} \pm \textbf{62.7}$ 205.9 ± 36.9 2572.7 ± 44.2 5.6 ± 1.6 5.0 567.1 ± 50.5 8.8 ± 1.5 2013.0 ± 12.0 223.6 ± 15.6 2521.8±116.5 5.6 ± 0.6 10.0 334.7 ± 9.0 8.0 ± 0.4 1024.0 ± 43.2 215.9 ± 8.1 2279.1 ± 40.8 3.2 ± 0.4 20.0 201.0 ± 9.1 2.7 ± 0.4 329.1 ± 10.0 191.7 ± 5.8 1550.5±194.9 3.1 ± 0.2

Table S1: Mechanical properties of tough magnetic hydrogels with various contents

References

of Fe₃O₄ nanoparticles (wt %).

- 1 R. S. Rivlin and A. G. Thomas, J. Polym. Sci., 1953, 10, 291.
- 2 J. Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J.

Vlassak and Z. Suo, Nature 2012, 489, 133.