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SUPPORTING INFORMATION
“Molecular dynamics test of the Hertz-Knudsen equation for evaporating liquid”

R.Holyst, M.Litniewski, D.Jakubczyk

Tables, figures, and formulas given in this section are marked by numbers preceded by S. If S
IS not present, the denotation refers to the main body of the paper.

The factor that we take into account in simulations of gas-liquid system is the so called
step error™* (called also the truncation error) of the numerical algorithm used for the
simulation. In the case of standard Verlet algorithm®* applied for typical Lennard-Jones (LJ)
liquid at time step At = 0.01 the step error “shifts” the pressure by around 0.01%", all in the
reduced LJ units. For the LJ algorithm the “shift” is proportional to At* so the effect may be
non-negligibly even for At = 0.001. The step error is especially important for the gas-liquid
systems since the effect strongly decreases with decreasing density>’. As a result, even in the
equilibrium state, the pressure calculated for the vapor may significantly differ from that for
the liquid, which is obviously a numerical artifact due to the finite value of At. In our case,
both for the equilibrium and non-equilibrium simulations the pressure in the gas phase was
higher by around 2.5x107 from that in the liquid. Generally, the difference determines the
accuracy limit for the simulation. However, here we can go beyond the limit by taking in the
calculations of ju« only the liquid parameters, which cancels the error in the (piiq — Peg) term in
Eq(1). As a result, the ratio jux/jm is not burdened with the discussed error. In the range of
random errors, juk/jm is constant (Fig. 2, Table S2) in spite of the fact that (piiq — Peg) Changes
from 2.8x10 to 1.86x10™.

In order to attain desired accuracy level, the equations of motion considered in the paper
were solved applying the Cowell-Numerov®**® 4-th order implicit method:

r(t+At)=2r; (t) —r; (t — At) + Alt; (F; (t + At) +10F; (t) + F, (t — At)) (S1)
vit+aty= TEHAD=0O LAY o0 AL 6E (1) F (- AD) (S2)

At 24

where rj, v, and F; = -X0g;j/0r; are the position, the velocity, and the force vector for the i-th
particle. Egs. (S1), were solved for the time step At = 0.005 using the iteration procedure
from Ref. S1.

A successful analysis of simulation results requires estimation of errors. We estimated the
standard error 6, Of measured quantity X by dividing the simulation data in nyg equal intervals,
for 13 values of nq varied from 8 to 20. The values of the standard deviation, o, , for the set of
ng data were calculated from the standard formula:
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where < >4 means the average over the interval and < > the average over the whole data
range. were used to estimate o, by analyzing o, (S3) as a function of ny (see also chapter 6.4
in Ref. S2). The analysis of 6,, (S3) as a function of ny (see also chapter 6.4 in Ref. S2) was
used to estimate o, given in Table. S1.

no | L=ly | L Tiig Plig=Peq c5e(p|eq) (PrigPea(Tiig))/ Ge(pleq)
1 |91.74 | 704.1 | 0.89916(6) | 0.032165(9) | 0.000018 0.25
2 |91.74 | 1008.2 | 0.89938(6) | 0.032193(14) | 0.000026 -0.68
3 |90.96 | 943.8 | 0.87548(5) | 0.026958(7) | 0.000015 0.53
4 190.16 | 1009.9 | 0.85001(8) | 0.022059(6) | 0.000015 0.52
5 190.16 | 1468.1 | 0.85011(6) | 0.022054(8) | 0.000015 -0.96
6 |88.84 | 1254.3 | 0.7971(1) | 0.013966(7) | 0.000013 0.08

Table S1. The results of the gas-liquid equilibrium simulations. The total time of measurements during
a single simulation run amounted always to 10° in LJ units. The figures in parenthesis give the
estimation for the standard error o, of the equilibrium pressure in units of the last digit of the
corresponding value . Ti; and piig=peq are the equilibrium values for a given simulation. They were
used in the minimization of Eq (6) weighted by the error in the equilibrium pressure c(p's,). Since Ty
and pjiq are not independent quantities, ce(p'eq) is obtained by analyzing the fluctuations of

péq = p,iiq + (apeqléT)T:T”q(T ,iiq —Tiiq ) where the sup index i denotes the current value and 9p,, /0T
is taken from Eq.(6).

L, [d10°] pig Tig | Theat | Pheat Piig | Jmx10* | jux10*

1468.1 | 40 | 0.66955 | 0.88872 | 3.00 | 0.0100 | 0.02997 | 3.19 0.80(9)

1009.9 | 65 | 0.66528 | 0.89440 | 1.75 | 0.01825 | 0.03121 | 1.92 | 0.620(65)

1468.1 | 55 |0.67724 | 0.87819 | 2.00 | 0.0140 | 0.02763 | 1.65 0.48(8)

1468.1 | 55 | 0.69472 | 0.85322 | 2.00 | 0.0115 | 0.02273 | 1.60 0.42(6)

1468.1 | 75 |0.67788 | 0.87731 | 1.75 | 0.0160 | 0.02741 | 1.26 | 0.350(45)

1009.9 | 90 | 0.68646 | 0.86520 | 1.30 | 0.02025 | 0.02495 | 0.91 | 0.250(45)

1468.1 | 150 | 0.68541 | 0.86669 | 1.40 | 0.0188 | 0.02523 | 0.73 0.23(5)

1468.1 | 190 | 0.68551 | 0.86651 | 1.20 | 0.0225 | 0.02517 | 0.46 | 0.120(45)
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1468.1 | 200 | 0.68430 | 0.86826 | 1.10 | 0.0255 | 0.02552 | 0.32 | 0.120(45)

Table S2. The evaporation parameters in the quasi stationary regime of evaporation. t is the time of
the data collection. For all systems: L, = L, = 90.16. The results for no = 7, 8, 9 are the mean of two
independent simulation runs and T gives the sum of the times. juk is calculated during the quasi
stationary stage using Eq(1) with peq(Tiiq) from Eq(6). The figures in parenthesis give the standard
error ce(juk) in units of the last digit of the corresponding value. The errors in j, were many times

2



lower than o¢(jik). For all the systems 0.85 < Tjiq < 0.9, during evaporation. This was the optimal
range of temperature (see Table S1) for the interpolation peq by Eq(6) .
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Figure S1. The profiles of the temperature (a), the density (b) and, the pressure (c) (all in the reduced
LJ units) during the quasi stationary stage for the simulation run nq 8 in Table S2. The temperature (a)



changes linearly with the distance z from Ty, at the border of the simulation box to Tji at the gas-
liquid interface. The temperature is constant and equal to T=T;q in the whole liquid slab. The vapor
density (b) changes in such a way that together with the temperature changes assures a constant
pressure in the vapor phase. Finally within the simulation error of the pressure in the liquid is equal to
that in the vapor (c).
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Figure S2. Current values of juk (empty squares) and oj, (black circles) as a function of time (all in
the reduced LJ units) in the stationary stage for the simulation runs ny 1 (Fig S2a) and n, 9 (Fig. S2b)
from Table S2. Both in Fig. S2a and S2b the time evolutions of of ju« is characterized by very large
long time fluctuations whereas j, is nearly constant. This suggests that the mechanism of evaporation
is not properly grasp by the HK equation (Eq(1)).

In the stationary regime of evaporation the flux as shown in Fig. S2 and Fig. 3 in the main textis
constant. This is the main proof that our simulations are indeed in this regime. Because the
evaporation is generally a very slow process therefore the differences between stationary and non-
stationary regime in the density, temperature and pressure are not very pronounced. This fact is
illustrated in Fig. S3 (dotted line is for non-stationary regime and red and green line are the profiles
during quasi-stationary evaporation.
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Figure S2. The temperature (a), the density (b) and the pressure (c) profile for the initial equilibrium
state (the dashed line, ng 5 in Table S1) and non-equilibrium evolutions (ny 8 in Table S2). The dotted
line represents the strongly non-equilibrium stage: the data averaged for -7000 < t < -4500. The green
solid and red solid lines represent the non-equilibrium stationary stage: the data averaged for 5000 < t
< 10000 (the green) and 50000 < t < 90000 (the red). t = O corresponds to the moment the flux j
becomes constant. The profiles for the stationary stage are discussed in the main body of the paper.

Finally since the HK equation is based on the assumption of the Maxwell-Boltzmann velocity
distribution we have tested the z-component velocity and its distribution during evaporation in
the gas phase, liquid phase and in the interfacial regime. Because in LJ units the typical
velocity is 1 and the average velocity in the evaporation flux is of the order of 107 the
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distributions should be given by the Maxwell-Boltzmann function (MBF). Indeed Fig.S4
illustrates this hypothesis.
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Figure S2. The velocity distribution functions (VDF(v,), the empty circles) and the Maxwell-
Boltzmann functions (MBF(v,) = exp(-v,’/ksT), the red line) for the evolution n, 1 (Table S2).
VDF(u,) = ny(u, Av,)(2ks T)"?Av,™ where n,(u, Av,) is the average number of particles for which u —
Av,/2 <v, <u+ Av,/2 and Av, = 0.01. For the interface the data are collected from z;,—c <z <z, + o
and for the gas from z;;, + 180 < z < zjiq + 220. In all the cases VDF excellently agrees with MBF.
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