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SUPPORTING INFORMATION 

“Molecular dynamics test of the Hertz-Knudsen equation for evaporating liquid”  

R.Holyst, M.Litniewski, D.Jakubczyk 

 

Tables, figures, and formulas given in this section are marked by numbers preceded by S. If S 

is not present, the denotation refers to the main body of the paper. 

     The factor that we take into account in simulations of gas-liquid system is the so called 

step error
S1

 (called also the truncation error) of the numerical algorithm used for the 

simulation. In the case of standard Verlet algorithm
S2

 applied for typical Lennard-Jones (LJ) 

liquid at time step Δt = 0.01 the step error “shifts” the pressure by around 0.01
S1

, all in the 

reduced LJ units. For the LJ algorithm the “shift” is proportional to Δt
2
 so the effect may be 

non-negligibly even for Δt = 0.001. The step error is especially important for the gas-liquid 

systems since the effect strongly decreases with decreasing density
S1

. As a result, even in the 

equilibrium state, the pressure calculated for the vapor may significantly differ from that for 

the liquid, which is obviously a numerical artifact due to the finite value of Δt. In our case, 

both for the equilibrium and non-equilibrium simulations the pressure in the gas phase was 

higher by around 2.5×10
-5

 from that in the liquid. Generally, the difference determines the 

accuracy limit for the simulation. However, here we can go beyond the limit by taking in the 

calculations of jHK only the liquid parameters, which cancels the error in the (pliq – peq) term in 

Eq(1). As a result, the ratio jHK/jm is not burdened with the discussed error. In the range of 

random errors, jHK/jm is constant (Fig. 2, Table S2) in spite of the fact that (pliq – peq) changes 

from 2.8×10
-5

 to 1.86×10
-4

.     

   In order to attain desired accuracy level, the equations of motion considered in the paper 

were solved applying the Cowell-Numerov
S1,S3

 4-th order implicit method:  
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where ri, vi, and Fi = -Σ∂φij/∂ri are the position, the velocity, and the force vector for the i-th 

particle.  Eqs. (S1), were solved for the time step Δt = 0.005 using the iteration procedure 

from Ref. S1. 

     A successful analysis of simulation results requires estimation of errors. We estimated the 

standard error σe of measured quantity X by dividing the simulation data in nd equal intervals, 

for 13 values of nd varied from 8 to 20. The values of the standard deviation, σw , for the set of 

nd data were calculated from the standard formula: 
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where < >d means the average over the interval and < > the average over the whole data 

range. were used to estimate σe by analyzing σw (S3) as a function of nd (see also chapter 6.4 

in Ref. S2). The analysis of σw (S3) as a function of nd (see also chapter 6.4 in Ref. S2) was 

used to estimate σe, given in Table. S1.  

 

 

n0 Lx=Ly          Lz       Tliq            pliq=peq   σe(p
l
eq)   (pliq-peq(Tliq))/σe(p

l
eq)          

1 91.74  704.1 0.89916(6)  0.032165(9) 0.000018            0.25 

2 91.74 1008.2 0.89938(6) 0.032193(14) 0.000026           -0.68 

3 90.96  943.8 0.87548(5)  0.026958(7) 0.000015            0.53 

4 90.16 1009.9 0.85001(8)  0.022059(6) 0.000015            0.52 

5 90.16 1468.1 0.85011(6)  0.022054(8) 0.000015           -0.96 

6 88.84 1254.3  0.7971(1)  0.013966(7) 0.000013            0.08 

 

Table S1. The results of the gas-liquid equilibrium simulations. The total time of measurements during 

a single simulation run amounted always to 10
5
 in LJ units. The figures in parenthesis give the 

estimation for the standard error σe of the equilibrium pressure in units of the last digit of the 

corresponding value . Tliq and pliq=peq  are the equilibrium values for a given simulation. They were 

used in the minimization of Eq (6) weighted by the error in the equilibrium  pressure σe(p
l
eq). Since Tliq 

and pliq are not independent quantities, σe(p
l
eq) is obtained by analyzing the fluctuations of

)((  liq
i

liqTTeq
i
liq

i
eq TTTppp

liq
 )/ where the sup index i denotes the current value and Tpeq  /

is taken from Eq.(6).  

 

 

     Lz    τ/10
3 

    ρliq     Tliq Theat   ρheat     pliq jm×10
4 

 jHK×10
4
 

1 1468.1  40 0.66955   0.88872   3.00 0.0100 0.02997    3.19   0.80(9) 

2 1009.9  65 0.66528   0.89440   1.75 0.01825 0.03121     1.92 0.620(65) 

3 1468.1  55 0.67724   0.87819   2.00 0.0140 0.02763     1.65   0.48(8) 

4 1468.1  55 0.69472   0.85322   2.00 0.0115 0.02273     1.60   0.42(6) 

5 1468.1  75 0.67788   0.87731   1.75 0.0160 0.02741     1.26 0.350(45) 

6 1009.9  90 0.68646   0.86520   1.30 0.02025 0.02495     0.91 0.250(45) 

7 1468.1 150 0.68541   0.86669   1.40 0.0188 0.02523     0.73   0.23(5) 

8 1468.1 190 0.68551   0.86651   1.20 0.0225 0.02517     0.46 0.120(45) 

9 1468.1 200 0.68430   0.86826   1.10 0.0255 0.02552     0.32 0.120(45) 

 

Table S2. The evaporation parameters in the quasi stationary regime of evaporation. τ is the time of 

the data collection. For all systems: Lx = Ly = 90.16. The results for n0 = 7, 8, 9 are the mean of two 

independent simulation runs and τ gives the sum of the times. jHK is calculated during the quasi 

stationary stage using Eq(1) with peq(Tliq) from Eq(6). The figures in parenthesis give the standard 

error σe(jHK) in units of the last digit of the corresponding value. The errors in jm were many times 
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lower than σe(jHK). For all the systems 0.85 < Tliq < 0.9, during evaporation. This was the optimal  

range of temperature (see Table S1) for the interpolation peq by Eq(6) .   
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Figure S1. The profiles of the temperature (a), the density (b) and, the pressure (c) (all in the reduced 

LJ units) during the quasi stationary stage for the simulation run n0 8 in Table S2. The temperature (a) 



4 
 

changes linearly with the distance z from Theat at the border of the simulation box to Tliq at the gas-

liquid interface. The temperature is constant and equal to T=Tliq in the whole liquid slab. The vapor 

density (b) changes in such a way that together with the temperature changes assures a constant 

pressure in the vapor phase.  Finally within the simulation error of the pressure in the liquid is equal to 

that in the vapor (c).                  
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Figure S2.  Current values of jHK (empty squares) and α
-1

jm (black circles) as a function of time (all in 

the reduced LJ units) in the stationary stage for the simulation runs n0 1 (Fig S2a) and n0 9 (Fig. S2b) 

from Table S2. Both in Fig. S2a and S2b the time evolutions of of jHK is characterized by very large 

long time fluctuations whereas jm is nearly constant. This suggests that the mechanism of evaporation 

is not properly grasp by the HK equation (Eq(1)). 

 

In the stationary regime of evaporation the flux as shown in Fig. S2 and Fig. 3 in the main textis 

constant. This is the main proof that our simulations are indeed in this regime. Because the 

evaporation is generally a very slow process therefore the differences between stationary and non-

stationary regime in the density, temperature and pressure  are not very pronounced. This fact is 

illustrated in Fig. S3 (dotted line is for non-stationary regime and red and green line  are the profiles 

during quasi-stationary evaporation. 
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Figure S2. The temperature (a), the density (b) and the pressure (c) profile for the initial equilibrium 

state (the dashed line, n0 5 in Table S1) and non-equilibrium evolutions (n0 8 in Table S2). The dotted 

line represents the strongly non-equilibrium stage: the data averaged for -7000 < t < -4500. The green 

solid and red solid lines represent the non-equilibrium stationary stage: the data averaged for 5000 < t 

< 10000 (the green) and 50000 < t < 90000 (the red). t = 0 corresponds to the moment the flux jm 

becomes constant. The profiles for the stationary stage are discussed in the main body of the paper. 

Finally since the HK equation is based on the assumption of the Maxwell-Boltzmann velocity 

distribution we have tested the z-component velocity and its distribution during evaporation in 

the gas phase, liquid phase and in the interfacial regime. Because in LJ units the typical 

velocity is 1 and the average velocity in the evaporation flux is of the order of 10
-3 

the 
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distributions should be given by the Maxwell-Boltzmann function (MBF). Indeed Fig.S4 

illustrates this hypothesis. 
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Figure S2. The velocity distribution functions (VDF(vz), the empty circles) and the Maxwell-

Boltzmann functions (MBF(vz) = exp(-vz
2
/kBT), the red line) for the evolution n0 1 (Table S2). 

VDF(uz) = nv(uz,Δvz)(2πkBT)
1/2

Δvz
-1

 where nv(u, Δvz) is the average number of particles for  which u – 

Δvz/2 < vz < u + Δvz/2 and Δvz = 0.01. For the interface the data are collected from zliq – σ < z < zliq + σ 

and for the gas from zliq + 18σ < z < zliq + 22σ. In all the cases VDF excellently agrees with MBF.   
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