Electronic Supplementary Information (ESI)

Self-assembled Metallogels Formed From N, N', N"-tris(4pyridyl)-trimesic amide in Aqueous Solution Induced by Fe(III)/Fe(II) Ions

Jin-Lian Zhong^{a,b}, Xin-Jian Jia^b, Hui-Jin Liu^b, Xu-Zhong Luo^{b*}, San-Guo Hong^{a*}, Ning Zhang^a, Jian-Bin Huang^{c*}

^a Institute of Applied Chemistry, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China. E-mail: nzhang.ncu@163.com

^b Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University, Ganzhou, 341000, China. E-mail: zhong.luo-supermolecule@outlook.com

^c College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China. Email: jbhuang@pku.edu.cn

Fig. S1 FT-IR spectrum of the TPTA.

Wavenumber(cm⁻)

Fig. S2 ¹H NMR (a) and ¹³C NMR (b) spectrums of TPTA (DMSO-*d*₆, 400MHz, 298K)

2) Gelation data

Reagents		
Α	В	— Behaviour
ТРТА	CuSO ₄ ·5H ₂ O	Ι
TPTA	CuCl ₂ ·2H ₂ O	Ι
ТРТА	CoCl ₂ ·6H ₂ O	Ι
TPTA	Ni(NO ₃) ₂ ·6H ₂ O	Ι
TPTA	$La(NO_3)_3 \cdot 6H_2O$	Ι
ТРТА	$Ce(NO_3)_3 \cdot 6H_2O$	Ι
ТРТА	ZnCl ₂	Ι
TPTA	$Pb(NO_3)_2$	Ι
ТРТА	AgNO ₃	Ι
ТРТА	RuCl ₃ ·3H ₂ O	Ι
ТРТА	NaCl	Ι
ТРТА	MgCl ₂	Ι
ТРТА	KCl	Ι
ТРТА	MnCl ₂	Ι
ТРТА	$CrCl_2$	Ι
ТРТА	K ₃ [Fe(CN) ₆]	Ι
TPTA	K ₄ [Fe(CN) ₆]	Ι
ТРТА	FeCl ₃ ·6H ₂ O	OG
ТРТА	$Fe_2(SO_4)_3 \cdot 9H_2O$	OG
ТРТА	$Fe_2(NO_3)_3$	OG
ТРТА	FeCl ₂ ·4H ₂ O	OG
ТРТА	Fe(NO ₃) ₂ ·6H ₂ O	OG
ТРТА	FeSO ₄ ·7H ₂ O	OG

 Table S1
 The gelation abilities of TPTA in the presence of different metal ions

OG= opaque gel; I= insoluble

Fig. S4 The photographs of metallogels in mixed metal ion solution

(a)-(g), Fe³⁺(0.10 mol/L)+M(0.10 mol/L): (a)M = Na⁺; (b) M = Cu²⁺; (c) M = Mn²⁺; (d) M = Co²⁺; (e) M = K⁺; (f) M = Cr²⁺; (g) M = Na⁺+K⁺+Cu²⁺+Co²⁺

(I)-(VII), $Fe^{2+}(0.01 \text{ mol/L})+M(0.01 \text{ mol/L})$: (I) M = Na⁺; (II) M = Cu²⁺; (III) M = Mn²⁺; (IV) M = Co²⁺; (V) M = K⁺; (VI) M = Cr²⁺; (VII) M = Na⁺+ Cu²⁺+ K⁺

3) Date of differential scanning calorimetry (DSC)

Fig S5 DSC thermograms from first heating of metallogels prepared by varying concentrations of TPTA in aqueous solution containing: (a) 0.050 mol/L Fe³⁺; (b) 0.10 mol/L Fe³⁺; (c) 0.010 mol/L Fe²⁺.

4) Date of ¹H NMR spectroscopy

Fig. S6 (a) Variable-temperature ¹H NMR spectroscopy for Fe(II)-TPTA gel in D₂O (0.010 mol/L Fe²⁺, 4.4 g/L TPTA); (b) Concentration-dependent ¹H NMR spectra of Fe(II)-TPTA in D₆-DMSO at 20 °C.

5) Date of UV-Vis spectra

Fig. S7 (a) UV-Vis spectra of TPTA solution at various coordination molar ratio of Fe³⁺ to TPTA in aqueous solution; (b) the absorbance of TPTA at the λ =281 nm.

Fig. S8 (a) UV-Vis spectra of TPTA solution at various coordination molar ratio of Fe²⁺ to TPTA in aqueous solution; (b) the absorbance of TPTA at the λ =281 nm.

6) STM images of Fe(II)-TPTA assembling structure

Fig. S9 STM image of Fe(II)-TPTA self-assembled structure (27.49 nm × 27.49 nm, V= 749.8 mV, I = 347.9 pA).