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1. UV-Visible

UV-Visible spectroscopy was used to evaluate the self-assembly of 33-mer gliadin peptide. 

The change in the position of the maximum absorbance peak of Tyrosine was studied by 

second derivative procedure using the third order Savitzky-Golay polynomial smoothing. We 

observed a change of the peak position from 274.5 nm to 275.0 nm when the concentration 

was increased from ≈ 60 µM to 80 µM. A similar behavior was observed from ≈ 150 µM to ≈ 

200 µM and the maximum shifted from 275.0 nm to 275.5 nm. These changes indicate that 

Tyrosine is less exposed to the solvent due to the formation of self-assembled structures.
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Figure S1. A) UV-Visible secondary derivative spectra of 33-mer peptide solutions in water 

at different concentrations. B) Peak position is concentration dependent.. 

2. DLS Theory and Data Analysis: 

Due to fluctuations caused by the Brownian motion of the scattering particles, the scattering 

intensity is a fluctuating parameter. These fluctuations of I can be analyzed using correlation 

functions1. The normalized electrical field autocorrelation function g1 contains information 

about the dynamics of the scattering system, in this case of the 33 mer solution:

                                                  (1)
𝑔1 (𝜏) =

< 𝐸𝑠 ∗ (𝑡) 𝐸𝑠 (𝑡 + 𝜏) >
< 𝐼 >

With Es= scattered electrical field, Es* = complex conjugate of Es and t =time.

In the case of a mono-disperse ideal sample  it is represented by a single exponential: 𝑔1 (𝜏)

                                                        (2)𝑔1 (𝜏) =  𝑒𝑥𝑝 ( ‒ Γ𝜏)



with = D q 2,with D  as a translational diffusion coefficient and q the scattering vector 1   Γ 

Normally samples are poly-disperse and the decay of the correlation function must be 

described by a weighted sum of exponentials:

                              (3)
𝑔1 (τ) =

+ ∞

∫
0

𝐺(Γ)exp ( - Γ𝜏) 𝑑Γ

G(Γ) is the distribution function of the relaxation rates. The analysis of the function given by 

Eq. (3) can be performed with different methods. The most frequently applied are the method 

of cumulants 2, 3 and the analysis of Eq. (3), by an inverse Laplace transformation by using 

for example of the FORTRAN program CONTIN. 4, 5 Multi-modal correlation functions can 

also be fitted with sums of exponentials using non-linear least-square methods. 6 From the 

mean value of the relaxation rate Γ (z-average) one can obtain : 𝐷

 (4)𝐷 = Γ𝑞2

is the mean translational diffusion coefficient.The scattering vector q is given by:𝐷 

                                                    (5)
𝑞 =

4𝜋n 
𝜆

𝑠𝑖𝑛(𝜃
2)

Here λ is the wavelength of the incident laser-beam, n the refractive index of the scattering 

medium and θ scattering angle. Knowing the value for D the Stokes radius Rs can be 

calculated from the Stokes-Einstein equation.

                              (Eq. 6)
𝑅𝑠 = 𝑘𝐵

𝑇
6𝜋𝜂𝐷



The diffusion coefficients may show concentration dependence, indicating inter-particle 

interactions. For the translational diffusion coefficient of interacting particles in dilute solution 

a linear dependence on the volume fraction Φ is expected. 7

Do = D [1+ αΦ]                                                             (7)

Here, α is the dynamic virial coefficient and Do the self-diffusion coefficient. From Eq. (7), 

the self-diffusion coefficient can be obtained by extrapolation to zero volume fraction 

(~concentration).

Based on the theory described in this section, the mean Rh values obtained for each group 

of size particles were calculated in the present work.

3. Atomic force Microscopy

1. Radius, volume and number of molecules calculations. 

The volume, the radius and the molecular mass of a protein could be obtained with a good 

estimation by AFM. 8,9,10 

In this article we calculated the radius of the isolated 33-mer spherical oligomers observed 

at 6 µM. Taking into account that AFM images are obtained by surface interaction and that 

the tip used, introduce a distortion, direct estimation of the oligomers radius is not possible. 

However, the volume of the spheres might be determined as it was proposed by Pietrasanta 

et.al. in equation 1 (Eq.7) 11.

                                            (7)𝑉𝑠 = 𝜋(h/6)[3𝑟2 + h2]

In which (h) is the average height of the spheres, and (r) is the radius estimated as the 

half of the full width at the half maximum height (FWHM). This last consideration is 

necessary to compensate the errors introduced by the conical shape of the tip, avoiding an 



overestimation of the protein width. 12 For these calculations, an average of 50 spheres were 

used in each sample. 

Then, the radius was calculated using the equation of the volume of the sphere (Eq.8).

    (8)
𝑉𝑠 =

4
3

𝜋𝑟3

In addition, the average volume obtained was used to calculate the number of molecules 

that possibly composed the oligomers. For this, the mass of the oligomer is calculated 

employing the equation proposed by Tanford (Eq. 9). 13

   (9)
𝑉 =

𝑀
𝑁

(𝑉2 + 𝛿𝑉1 )

where M is the molecular mass of the oligomer, N the Avogadro Number,  the partial 𝑉2

specific volume, calculated by molecular diffusion estimations (for this an average value of 

0.73cm3/g was calculated for globular proteins), is the pure solvent volume, which is 𝑉1 

assigned a value of 1 cm3 /g and is the specific solvation, calculated by isotopic exchange 𝛿 

experiments of ovalbumin, using H2O18. This value is estimated to be equal for all the 

proteins. 

Dividing the mass obtained for the oligomer (by Eq.9) by the molecular mass of a single 

molecule of peptide (3917g/mol), the average number of molecules presented in the 

sphere can be obtained. 



2 Supplementary AFM Images
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Figure S3. Selected topographic images from Figure 3 in the main text. A) Spherical 

oligomers, B) annular oligomers, C) planar “sheet” like structures. D), E) and F) Height 

distribution of images A), B) and C), respectively. For this statistical analysis, the height 

of 50 particles were considered. 

Figure S4. Selected Images of 33-mer peptide spherical oligomers observed at 610μM in 

water, pH7 in: A) topographic and B) deflection error image. C) Height distribution of the 

detected particles.

4 Fractal Dimension: 



Fractal Dimension is a measure of the complexity of a system. It is a scaling rule that is used 

to compare how pattern details change when the scale varied from minor to major resolution. 

Mathematically, it is expressed as 

𝑁 ∝  𝜖 ‒ 𝐷𝑓

Where Df is the fractal dimension,  is the number of pieces observed in each new resolution 𝑁

and   is the scale used for each pieces. 𝜖

FracLac software from Image J was employed for the determination of Df using the box 

counting procedure. The basic procedure is to lay systematically a series of grids of 

decreasing calibre (the boxes) over an image and record data (the counting) for each 

successive calibre. The program gives access to Df obtained by the application of several 

mathematical algorithms.

Figure S5. 8 bit images employed for Df calculation at the selected concentration of 33-mer 
peptide solution: A) 6 µM, B) 60 µM, C) of 250 µM. 
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Figure S6. 8 bit images employed to calculate Df of 33-mer peptide at 610µM deposited on 
bare mica.

5 Scanning Electron Microscopy (SEM)

Figure S7. SEM of 33-mer peptide at 610µM in aqueous solution at pH 7.0. A) Image 

presenting the quaternary structures made mainly of plaques and filaments. B) Zoom of the 

region marked as square in image A, showing in details the micro-arrange of the peptide (a) 

spheres, (b) filaments and (c) plaques.
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