# Soft Matter

### **RSCPublishing**

### COMMUNICATION

## The influence of the localised charge of C- and Ntermini on peptide self-assembly

C. Bortolini,<sup>a</sup> N. C. Jones,<sup>b</sup> S. V. Hoffmann,<sup>b</sup> F. Besenbacher <sup>a</sup> and M. Dong\*a

Received 00th January 2015, Accepted 00th January 2015

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

www.rsc.org/

## **Supporting Information**



**Fig. S1** Charge curves for all 3 sequences. Isoelectric points are indicated with squares: A5N5 = 6.0, D5N5 = 2.8 and D5H5 = 5.0. A green dashed line indicates the pH value at which all peptides were incubated in (pH = 2.5).



Fig. S2 SRCD and Absorbance spectra of all peptides analyzed in this work.

*Figure S2* shows the SRCD spectra (upper panel) and the corresponding absorbance spectra (lower panel) for all peptides measured with a concentration of 1 mg/ml for each peptide. The absorbance of histidine rich sequences is much higher than the others, most likely due to the presence of aromatic rings.

|                          | α–helices<br>ordered | α-helices<br>distorted | β–strands<br>ordered | β–strands<br>distorted | Turns | random<br>coil | α–helices<br>TOTAL | β–strands<br>TOTAL |
|--------------------------|----------------------|------------------------|----------------------|------------------------|-------|----------------|--------------------|--------------------|
| A5N5-COOH                | 0.02                 | 0.02                   | 0.15                 | 0.12                   | 0.17  | 0.51           | 4%                 | 27%                |
| N5A5-COOH                | 0.00                 | 0.00                   | 0.16                 | 0.12                   | 0.16  | 0.53           | 0%                 | 28%                |
| D5N5-COOH                | 0.02                 | 0.06                   | 0.23                 | 0.11                   | 0.15  | 0.43           | 8%                 | 34%                |
| N5 <mark>D5</mark> -COOH | 0.01                 | 0.06                   | 0.22                 | 0.11                   | 0.15  | 0.44           | 7%                 | 33%                |
| D5H5-COOH                | 0.17                 | 0.08                   | 0.12                 | 0.08                   | 0.15  | 0.39           | 25%                | 20%                |
| H5 <mark>D5</mark> -COOH | 0.03                 | 0.02                   | 0.13                 | 0.13                   | 0.18  | 0.53           | 5%                 | 26%                |

Table S1 Synchrotron radiation circular dichroism (SRCD) secondary structure contents of peptides predicted using Dichroweb<sup>1, 2</sup>.



Fig. S3 AFM images and line profiles of peptide structures: a) A5N5; b) N5A5; c) D5N5; d) N5D5; e) D5H5; f) H5D5.

#### Experimental

#### **Atomic Force Microscopy (AFM)**

AFM experiments were performed in air at room temperature  $(21 \pm 1^{\circ}C, humidity 22\%)$  using a Multimode SPM system with a Nanoscope VIII controller (Veeco Instruments Inc., Santa Barbara, CA). All the recorded AFM images consist of 512 x 512 pixels and several images were obtained at separate locations across the mica surfaces to ensure a high degree of reproducibility of the recorded molecular nanostructures. Samples are prepared by pouring 10 µl of the peptide solution on a freshly cleaved mica surface, rinsed with distilled water and dried with pressurised air.

#### **Peptides incubation**

Monomers were incubated in an aqueous solution (in which the pH was adjusted to 2.5 by HCl titration) at room temperature (or at 35°C when specified) and continuously shaken at 500 rpm. Monomer concentration was 2 mg/mL.

#### Peptide charge charts and ISO determination

Peptide charge charts (including the ISO point) were computed by using the following equation:

$$Z = \sum_{i} N_{i} \frac{10^{pKa_{i}}}{10^{pH} + 10^{pKa_{i}}} - \sum_{j} N_{j} \frac{10^{pH}}{10^{pH} + 10^{pKa_{j}}}$$

where Z is the peptide net charge, pKai and Ni are the pKa values and number of the N-terminus and the side chains of Arginine, Lysine and Histidine, whereas pKaj and Nj are the pKa values and number of the C-terminus and the Aspartic Acid, Glutamic Acid, Cysteine, Tyrosine amino acids (see, for example: D. S. Moore, Amino Acid and Peptide Net Charges: A Simple Calculational Procedure, in Biochemical Education, Volume 13, Issue 1, Wiley, 1985, from which this formula can be easily derived).

#### **Data Analysis**

All the AFM images were analysed by means of the commercial Scanning Probe Image Processor (SPIP<sup>TM</sup>) software. All force curves were analysed with offline software NanoScope Analysis (Bruker, Santa Barbara, CA).

SR-CD spectra were analysed by using Dichroweb; in particular, we employed the CDSSTR programme with reference set SP175 (Optimised for 175-240 nm) and no scaling factor (i.e. scaling factor = 1.0).

http://dichroweb.cryst.bbk.ac.uk/html/userguide.shtml#Analysis%20Programme

#### Synchrotron Radiation Circular Dichroism (SR-CD)

Synchrotron Radiation Circular Dichroism (SR-CD) spectra were collected on the AU-UV beam line on the ASTRID2 storage ring (ISA, Aarhus University, Denmark). Similar to the CD experiment previously described on the CD1 beam line on ASTRID<sup>3, 4</sup>, light from the AU-UV beam line was polarized with a MgF<sub>2</sub> Rochon polarizer (B-Halle GmbH, Berlin) and a photo elastic modulator (Hinds, USA) produced alternating left and right handed circular polarized light. The light was then passed though the sample, with concentrations of 1 mg/mL, and was detected by a photo multiplier tube (Type 9406B, ETL, UK). Spectra of water were recorded for baseline subtraction. Samples were measured in a 0.1 mm path-length Suprasil cell (Hellma GmbH). Sample and baseline spectra (1 nm steps size and 2 second dwell time) were each collected in triplicates, averaged and slightly smoothed with a Savitzky-Golay filter using a purpose made Excel template.

- 1. 2. L. Whitmore and B. A. Wallace, Nucleic Acids Res, 2004, 32, W668-W673.
- L. Whitmore and B. A. Wallace, Biopolymers, 2008, 89, 392-400.
- 3. A. J. Miles, S. V. Hoffmann, Y. Tao, R. W. Janes and B. A. Wallace, Spectrosc-Int J, 2007, 21, 245-255.

4. A. J. Miles, R. W. Janes, A. Brown, D. T. Clarke, J. C. Sutherland, Y. Tao, B. A. Wallace and S. V. Hoffmann, J Synchrotron Radiat, 2008, 15, 420-422.