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5° increments ranging from 95 to 120C.  The reaction force was obtained as a function of strain 
and frequency, and the material shear storage modulus (G’), shear loss modulus (G”), and phase 
angle (tan(δ) = G”/G’) were calculated.  Figures 4a,c in the paper plot the storage modulus and 
phase angle as measured by the rheometer, respectively.  A vertical shift of Tg/T (temperatures in 
Kelvin) has been applied to the storage and loss modulus data used to obtain these plots.  These 
curves can be shifted horizontally in frequency according to the time-temperature superposition 
principle to allow the evaluation of viscoelastic material properties at frequencies or 
temperatures that are otherwise not measurable.  Once shifted, the isothermal curves make up a 
viscoelastic master curve at the selected reference temperature.  Assuming that the material is 
thermo-rheologically simple, the isothermal curves can be shifted in frequency according to the 
Williams-Landel-Ferry (WLF) equation:3 
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where C1 and C2 are empirical parameters, T is the experimental temperature, and Tref is typically 
taken as the glass transition temperature, Tg.  Reasonable alignment of the shear modulus curves 
was obtained with the standard WLF shift factors of C1 = 17.44 and C2 = 51.6 3 and a reference 
temperature of Tref  = Tg = 103C.  After obtaining the master curve, the time-temperature 
dependent behavior at any temperature above the glass transition temperature Tg can be 
determined through further application of the time-temperature superposition principle.  

The viscoelastic master curve obtained by the time-temperature superposition principle can 
be modeled using a Prony series to represent a generalized Maxwell model4,5.  To do this, a 
series of suitable dimensionless relaxation moduli gi and relaxation times τi were calculated to fit 
a Prony series to G’ and G” using a bounded search algorithm implemented in Matlab.  The 
Prony series for the storage and loss moduli of a viscoelastic material can be implemented in 
ABAQUS5 according to: 
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where G0 is the instantaneous shear modulus and ݂ is the frequency in Hz.  The generalized 
Maxwell model is validated by the fit of the model to the experimental storage modulus data (cf. 
Figure 4b), and the model is further validated by the fit of the model to the phase angle data as 
shown in Figure 4d.  As seen in these plots, the fit of the model begins to deteriorate as the 
material enters the rubbery plateau and terminal zones of the data (low frequency).  This is 
attributed to the fact that polystyrene is a thermoplastic that will flow at higher temperatures or 
low frequencies (long times) even though the molecular weight of Shrinky-Dinks exceeds the 
entanglement molecular weight of polystyrene.  The calculated Prony series coefficients are 
summarized in Table I.  Other material properties used as inputs to the finite element model are 
listed in Table II.  
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Table I.   Prony series coefficients for Shrinky-Dink material 

# 1 2 3 4 5 6 

gi 0.2089 0.3654 0.3037 0.1011 0.01243 0.004661 

τi 
(s) 

1.182 14.77 114.8 402 3096 25680 

	

	

	

Table II.   Material properties used in the finite element model 

Property Value Reference 

Thermo-Rheologically 
Simple WLF Parameters 

C1 = 17.44 [3] 

C2 = 51.6 [3] 

Tref = Tg = 103°C this work 

Instantaneous Elastic 
Modulus, E  

1.78 x 109 Pa this work 

Poisson’s Ratio, ν 
0.33 (T < Tg) [6] 

0.4995 (T > Tg)   

Thermal Conductivity, k  0.14 W/mK [7] 

Density, ρ 1050 kg/m3 [8] 

Thermal Expansion 
2.09 x 10-4 K−1 (T < Tg) [6] 

5.65 x 10-4 K−1 (T > Tg) [6] 

Specific Heat 1300 J/kgK this work 

 

The in-plane shrinkage model makes use of two planes of symmetry (cf. Figure S2c).  The 
dimensions of the model prior to shrinking were 10 mm (length) × 10 mm (width) × 0.3 mm 
(thickness).  Following the pre-straining sequence, the model was subjected to a specified 
temperature boundary condition on all surfaces that were not planes of symmetry as shown in 
Figure S2b.  Mechanical displacement normal to each plane of symmetry was prevented in 
addition to a prevention of out-of-plane (Z-direction) displacement of one node at the 
intersection of the two planes of symmetry. 
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The out-of-plane folding model with one plane of symmetry was shown in Figure 2.  
Following the pre-straining sequence, the model was subjected to convective boundary 
conditions on all surfaces that were not the plane of symmetry.  An additional thermal boundary 
condition was applied to the hinge surface to model heating of the hinge surface.  Mechanical 
displacement normal to the plane of symmetry was prevented in addition to fixed displacements 
at specific locations on the model as shown in Figure 2b.  Initially, a model for the folding of a 
sample with a 1 mm hinge width was developed.  To account for the non-uniform thermal 
boundary conditions, a convective heat transfer coefficient of h = 5 W/mK and sink temperature 
of 90C was applied to all surfaces except the face in contact with the hot plate and the back of 
the hinge.  For the face in contact with the hot plate, a convective heat transfer coefficient of 
h = 2000 W/mK and sink temperature of 90C was applied to model the thermal contact 
conductance between the hot plate and the polymer.  For the back of the hinge, which lifts away 
from the hot plate through the folding process, a heat transfer coefficient that transitions from h = 
2000 W/mK to h = 5 W/mK across the width of the hinge was applied.  These thermal boundary 
conditions were validated by applying the experimentally measured hinge temperature to the 
hinge region of the model.  The model results provide a very reasonable comparison of bending 
angle to the experimental results as seen in Figure S4.  For the larger hinge widths, the same 
length of transition for the heat transfer coefficient on the back side of the hinge as that for the 1 
mm hinge width model was used, although the location of this transition on the back of the hinge 
was shifted toward the edge of the hinge nearest the hot-plate. 

 
Figure S4.   Bending angle results obtained by specifying experimentally measured hinge temperature for 
1 mm hinge width model.  The solid line represents model results.  Symbols represent experimental 
results. 

	

A suitable model for the IR heat flux was developed based on reported values for the IR heat 
flux measured by a thermopile and comparison of modeled temperature results to the measured 
hinge temperature.  The IR flux of the light in the experimental setup is ~1,000 mW/cm2 (=10,000 
W/m2);1 this value was initially applied as a constant heat flux on the hinge surface.  A model of 
the 1 mm hinge width sample using this constant surface heat flux underpredicts the maximum 
bending angle of the hinge.  Additionally, the average temperature of the hinge heated by a 
surface heat flux (because the temperature is non-uniform when heated by a surface heat flux) is 
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folds.  Additionally, information for the shrinkage profile through the thickness along the folding 
angle bisection line was extracted from the model by first selecting two nodes each on the top 
and bottom of the lifted and non-lifted face of the folding polymer away from the hinged region 
(8 nodes total).  The two intersection points of vectors defined by these sets of nodes are used to 
define the folding angle bisection vector. These vectors are depicted as gray lines in Figure 8a. 
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