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1. Simulation methods

In the numerical calculations, presented in the article, we take advantage of the tensor 
description of nematic liquid crystals, where nematic order is described by a traceless tensor 
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the main ordering axis –the director. Possible biaxiality is described by the biaxial parameter 
P and a second director .  is an axis perpendicular to  and . The  symmetry is 𝑒1 𝑒2 𝑛 𝑒1 𝑛↔ ‒ 𝑛
inherently incorporated in the tensor approach.

Numerical results are based on the minimization of the Landau-de Gennes free energy (1) 
combined with the free energy of a surface anchoring (2) (3):
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where A, B, C are parameters tuning the nematic phase behavior.  is the k-th spatial 𝑥𝑘

coordinate. The corresponding derivatives of the tensor order parameter describe the effective 
elasticity, whose strength is given by the  tensorial elastic constants. They are 𝐿1, 𝐿2, 𝑎𝑛𝑑 𝐿3

connected to Frank elastic constants by the relations: , 
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consist of a term independent on the nematic ordering and a dielectric coupling between 
electric field and tensor order parameter, which tends to align the nematic molecules along the 
direction of the electric field.  is the average permittivity and  the molecular dielectric 𝜀̅ 𝜀𝑚𝑜𝑙

𝑎

anisotropy.  is the strength of the uniform surface anchoring with  being the surface-𝑊𝑢𝑛𝑖 𝑄0
𝑖𝑗

preferred order parameter tensor.  is the strength of the planar-degenerate anchoring, 𝑊𝑑𝑒𝑔

which prefers the alignment along the surface with the degree of order of .𝑆𝑆
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(Meta)stable nematic configurations correspond to the minima of the free energy. To reach a 
minimum of a free energy, we use explicit relaxation algorithm for the Q-tensor to evolve 
from the initial conditions by the following rules:
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where ν is the surface normal and  and  correspond to bulk or surface integrals in 𝐹𝑏𝑢𝑙𝑘 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒

Eq. 1, respectively. Such relaxational procedure corresponds to the approximation of nematic 
dynamics without material flow (4) (5). More details on the numerical model can be found in 
(6).
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