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I. EFFECTS OF τp AND τq ON THE DYNAMICS OF CELL AREA AND FORCE

Solving the more general case where the dynamics of Q(t) are explicitly taken into considera-

tion we find the following third-order linear differential equation for P(t), from which a solution

for R(t), f (t) and Q(t) can also be obtained by direct substitution:

Aτpτq
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(S2)

and,

k̃l ≡ (1+β )kl; κ̃c ≡ (1+α)κc (S3)

This equation can be solved analytically as a sum of three exponents with rather complicated

expressions of the model parameters. We thus demonstrate here the essential consequences that

may arise when the dynamics of Q(t) are taken explicitly. Because the actively generated stress,

Q(t), operates in a direction that facilitates spreading it generally acts in opposition to myosin

contractility in the lamellar bulk and thereby suppresses the dynamical effects that P(t) has on

spreading. As seen in Fig. S1c including Q(t) mainly has the effect of smoothing out the local

maxima resulting from P(t) dynamics since these forces resist the late decrease in cell area. The
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FIG. S1. Effects of τp and τq on the dynamics of cell area and force during spreading. Left panel curves

are plotted for τp/τ0 = 0,1,2,3,5, from bottom to top respectively, solid lines are for τq/τ0 = 1, dashed

lines are for τq = 0. Right panel curves are for τq/τ0 = 0,1,2,3,5, from top to bottom respectively, and

τp/τ0 = 1. Other factors are km/kl = 1, α = β = 1, τc = ξc/(2κc) = 0.16τ0. Scaled quantities R̄(t) and f̄ (t)

are as defined in main text figures. The irregular shape of the R(t) curves is seen to mainly depend on the

dynamics of P(t); because the cell is free to contract, the force f (t) only weakly depends on the dynamics

of P(t). Slow myosin contractility in the lamellar bulk results in a late decrease in cell area. Dashed lines in

panel a. and b. show that taking τq = 0 provides a good approximation to the full solution. Q(t) dynamics

has little effect on the shape of the R(t) and f (t); slower Q(t) dynamics generally tends to smoothen the

curves since these forces act in opposition to the active contractility, P(t), of myosin motors in the lamellar

bulk. An interesting consequence of very slow Q(t) dynamics is a late increase in cell area and force as

seen by the red and green curves in panels c and d.

green curve in panel c shows that a sufficiently slow Q(t) dynamics (τq ∼ 5τ0) may give rise to a

late phase of slow increase in cell area. Compared to the bold consequences of P(t) on the shape

of the R(t) curves, Q(t) has a much less observant effect. Panel a shows that reducing the value of

τq from 1τ0 to zero has only a minor effect on the shape of the spreading curves. This justifies the
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simplifying approximation we adopt in the manuscript in setting τq = 0.

II. CONTRIBUTION OF MYOSIN FORCE TO TOTAL TRACTION DURING SPREADING

rigid matrix Intermediate matrix soft matrix 

a. 

P

f
R

d. e. f. 

10/lm kk  lm kk  lm kk 10 

0
!! "p

0
!! #p

b. c. 

FIG. S2. Evolution of (normalized) cell radius, force and myosin dipolar stress, for three cases of matrix

to cell rigidity ratio and for the two points a. and b. in panel 4a. The plots complement the analysis

shown in Fig. 4b and 4c. We use α = β = 3 and τp/τ0 = 0.11 τp/τ0 = 20.9, for the points a. and b.,

respectively. τ0 is defined as the value of τ for β = 0 and km = kl . The scaled quantities are defined as

follows: R̄(t) = [R(t)−R0]/[Rss −R0], f̄ (t) = [ f (t)− f0]/[ fss − f0], P̄(t) = P(t)/Pss, where Rss, fss and Pss

are the steady-state values of cell radius, force and actomyosin contractility, and R0, f0 are the respective

initial values of cell radius and force; P(t) is assumed to polarize from an initial value P0 = 0.

The total elastic force exerted onto the matrix during spreading includes two distinct contribu-

tions that are experimentally indistinguishable. Those are the active myosin force and the passive

viscoelastic force resulting from the stretching of the cytoskeleton network and the membrane

during spreading. Our theory allows us to examine these two contributions during spreading.

Fig. S2 shows the variations of the normalized quantities, P̄(t) = P(t)−P0
Pss−P0

= P(t)
Pss

, f̄ (t) = f (t)− f0
fss− f0

and
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R̄(t) = R(t)−R0
Rss−R0

, during spreading for the cases shown in Fig. 4b and 4c. Examining panel f., for

example, allows us to physically explain how an oscillatory behavior may arise in case of a rigid

substrate when τp > τ0. Because τp is relatively long, the cell may rapidly extend in size with

relatively weak resistance - resulting in a first peak in cell radius. Once myosin polarization takes

an effect it causes a slow contraction of cell radius - giving rise to a first minimum in R(t). This

elastic contraction is accompanied by relaxation of cellular stress and, via the coupling expressed

in Eqs. 5−7, leads to subsequent reduction in myosin force. This allows the cell to accelerate to

a second (smooth) peak in R(t); these oscillatory dynamics are damped due to various frictional

interactions involved hence a steady-state is eventually reached. Similar reasoning explains other

spreading phenomena predicted by our theory.

III. A MICROSCOPIC STOCHASTIC MODEL OF CELL SUBSTRATE INTERACTION

The details of the microscopic stochastic model used in the derivation of Eq. 2 have been

discussed elsewhere [1, 2] and we repeat them briefly here for completeness. Upon forming a

connection between the actin network and ligands in the ECM, molecular elements in both the

lamella and the ECM are elastically deformed by the retrograde flow of actin. We hypothesize that

the total density of integrin linkers in the membrane, N, is fixed, and that integrins may either be

engaged in an actin-ECM connection, or be disconnected. We thus assume a two-state model in

which Nb/N is the fraction of integrins that are engaged in an elastic coupling between the actin

network and the ECM, and Nub/N = 1−Nb/N is the remaining fraction of unbound integrins. In

the following only these two states are considered while the reorganization dynamics of integrins

in the membrane to form focal complexes with a distribution of cluster sizes are ignored for sim-

plicity. Each connection behaves as a molecular clutch [3] that couples the motion of the actin

network to an elastic deformation of the ECM. Once bound and pulled backward by the tensile

forces in the cytoskeleton, a local elastic deformation is created in both the ECM and the lamellar

cytoskeleton. We denote by s = sl + sm the total local displacement of one actin-ECM connection,

where sl and sm are, respectively, the separate displacements of the lamella and matrix springs. We

define these displacements to be positive when stretched in the direction of the retrograde flow, vF .

The density of engaged adhesion sites, Nb, and the mean displacement, ⟨s⟩, are in general func-

tions of the sliding speed, vF , the density of ligands on the surface, NL, and the binding/unbinding

kinetic rates of ligands to the cytoskeleton. To predict these dependencies we exploit a simple
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stochastic model for the binding kinetics at the cell-matrix interface, inspired by Walcott et al. [2].

We denote by n(s, t) the number of engaged actin-ECM adhesions present in a unit area of the the

adhesion layer with displacement between s and s+ ds at time t. The rate of change in n(s, t) is

given by :
∂n(s, t)

∂ t
=−vF

∂n(s, t)
∂ s

+ kb g(s)Nub(t)NL − kub(s)n(s, t) (S4)

with the normalization condition given by
∫ ∞
−∞ n(s, t)ds = Nb(t) and Nub(t) = N −Nb(t). Here,

kb NL and kub(s) are the binding/unbinding pseudo-first-order rate constants. The binding rate con-

stant, kb NL, is assumed to be strain-independent and to linearly depend on the density of ligands

on the surface, NL. The function g(s) accounts for the probability that a connection will form with

non-vanishing displacement, s. Because the time scale at which the number of connected integrins

reaches a steady-state is likely to be much shorter than the time scale of minutes with which we

are concerned, we seek for steady-state solutions of Eqs. S4 and consequently all relevant symbols

hereafter refer to the steady-state solution. A particular (Green’s function) solution is obtained by

assuming that g(s) = δ (s) is a delta function; this is applicable to the case that connections always

form with zero displacement initially. One finds the following solution for n(s) in the steady state:

n(s) =
N exp

[
−1
vF

∫ s
0 kub(s′)ds′

]
θ(s)

vF
kb
+

∫ ∞
0 exp

[−1
vF

∫ s
0 kub(s′)ds′

]
ds

(S5)

where θ(s) is the Heaviside step function. This solution can be used to find a general solution for

any choice of g(s) by linear superposition (e.g., see [4]). Once n(s) has been determined, the mean

displacement, ⟨s⟩ = ⟨sl + sm⟩, and density of bound integrin connections, Nb, can be calculated

via:

⟨s⟩= 1
Nb

∫ ∞

0
s n(s)ds and Nb =

∫ ∞

0
n(s)d s (S6)

Eqs. S5, S6 can be used to study different forms of the displacement-dependence of the rate con-

stants, and one can distinguish between catch-bond and slip-bond dynamics, see [1] for a dis-

cussion of these cases. A significant simplification is obtained with the assumption that g(s) is

symmetric and that the binding/unbinding rate constants are displacement independent, i.e., that

kbNL = 1/τub and kub = 1/τb are constants, where τub and τb are the corresponding mean life time

of the unbound and bound states. In this case, Eqs. S5, S6 directly lead to the results stated in

Eq. 2:

Nb =
τb

τb + τub
N and ⟨sl + sm⟩= τb vF (S7)
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The validity of the assumption that τub and τb are fixed during spreading has been examined with

experiments on endothelial cells by measuring the temporal dependence of the (mean) radial cell

tractions on cell spreading speed [1]. The analysis suggested that cell-substrate adhesions behave

as catch-bonds, namely that kub(s) is, on average, a decreasing function of s in the course of

spreading. Finally, Eq. S7 can also be derived directly from Eq. S4 by multiplying both sides of

the equation by s and integrating over the whole range of s from minus-infinity to infinity.
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