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1 Supplementary movies

Movie S1 Typical 3D morphology of paramagnetic chains in a soft gel in the absence
of a magnetic field. The elastic modulus of the gel is 0.78± 0.22 Pa and the scale bar is
300 µm.

Movie S2 Typical 3D morphology of paramagnetic chains in a soft gel under a perpendic-
ular magnetic field (B = 216.4±1.1 mT). The elastic modulus of the gel is 0.78±0.22 Pa
and the scale bar is 300 µm.
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2 Supplementary information for experiments

2.1 Paramagnetic particles

According to the manufacturer (microParticles GmbH), the paramagnetic particles were
fabricated based on porous polystyrene particles. Within the pores of the polystyrene par-
ticles, nanoparticulate iron oxide was distributed, rendering the particles superparamag-
netic. To prevent iron oxide leaching, the paramagnetic particles were covered with thin
polymer layers which also held the fluorophores. The diameter of the paramagnetic parti-
cles from the scanning electron microscopy (SEM) images (see Fig. S1a) is 1.4±0.2 µm.
We also measured the length of linear particle chains in polydimethylsiloxane using laser
scanning confocal microscopy (LSCM). Dividing the length of the chains by the number
of particles in the chains we got a diameter of 1.48±0.13 µm (average for 20 chains). We
used the latter value for calibration and calculation in this paper.

Figure S1 (a) Scanning electron microscopy (SEM) image of the paramagnetic particles. The
scale bar is 5 µm. (b) Magnetization curve of the paramagnetic particles. The magnetic field H
was increased from 0 kA/m to 900 kA/m and then decreased to 0 kA/m, and the magnetization M
showed no hysteresis, as indicated by the red arrows.

The magnetization curve of the paramagnetic particles was measured by a vibrat-
ing sample magnetometer (VSM, Lake Shore 7407). The magnetization of the parti-
cles showed no hysteresis when the external magnetic field was increased and decreased,
demonstrating the superparamagnetic property (Fig. S1b).

2.2 Calibrating the magnetic properties of the paramagnetic parti-
cles

A spherical colloidal particle moving in a viscous fluid with a relative velocity v is subject
to a frictional force (Stokes’ drag)

Fd =−6πηRv, (S1)

where R is the radius of the particle and η is the dynamic viscosity of the fluid.
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Figure S2 Histogram of velocity of paramagnetic particles moving in a viscous liquid. The viscos-
ity of the liquid is 0.61±0.02 Pas. The magnetic field strength is 32.7±0.2 mT and the magnetic
gradient is 3.63±0.02×10−5 mT/µm. Using a density of 1.7 g/cm3, the movement of the parti-
cles, the magnetic gradient, and the magnetization curve can be correlated.S1,S2

Under a magnetic field B, the magnetic particles move along the magnetic field gradi-
ent. The magnetic force Fm acting on a paramagnetic particle isS1,S2

Fm = m ·∇B, (S2)

where m is the induced magnetic dipole moment of the paramagnetic particle. In the
steady state, the magnetic force is balanced by Stokes’ drag, thus

6πηRv = m ·∇B. (S3)

From experiments, the left-hand side of Eq. (S3) and ∇B can be measured directly. We
dispersed the paramagnetic particles into a viscous liquid with a viscosity of 0.61±
0.02 Pas. The dispersion was added into a sample cell with a thickness of 160 µm.
Then the sample cell was carefully sealed in order to avoid drift due to large-scale
flow of the liquid. We used a magnetic field of 32.7± 0.2 mT with a gradient of
3.63± 0.02× 10−5 mT/µm to induce flow of the paramagnetic particles. The magnetic
field was measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The
movement of the particles (far from the walls of the sample cell) was recorded using
LSCM. The magnitude of the magnetic moment m can be calculated via m = 4πR3ρM/3,
where M can be obtained from the magnetization curve (Fig. S1b) and ρ is the density of
the paramagnetic particles. Using ρ = 1.7 g/cm3, we find that Eq. (S3) is satisfied. This
density value is in agreement with the one provided by the manufacturer (1.5–2 g/cm3).

In our study the paramagnetic particles are not ideally monodispersed and the induced
magnetic moment is not ideally identical for every particle. For example, the velocity
of the paramagnetic particles moving in a viscous liquid under a magnetic gradient has a
distribution with∼ 20% deviation (Fig. S2). According to Eq. (S3), the magnetic moment
of the particles should have a similar distribution. For simplification, we do not consider
this distribution in the modeling and simulation.
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2.3 Determining the elastic modulus of the soft gels

Figure S3 (a) Shear elastic modulus (G′) of the gels as a function of angular frequency. The gels
were fabricated with different concentrations (c) of the prepolymer mixture as indicated for the
different sets of data points. (b) The low-frequency G′ of the gels plotted as a function of c. The
solid curve is the best fit of Eq. (S4) to the experimental data.

The rheological experiments were performed in a strain-controlled rheometer (ARES-
LS, Rheometric Scientific Inc., Piscataway, NJ, USA) equipped with a Couette cell at
room temperature. The elastic modulus (G′) shows a plateau at low frequencies for the
soft gels (Fig. S3a), reflecting the formation of a percolating network. The plateau mod-
ulus increases with increasing concentration of the prepolymer mixture (c) following a
power lawS3

G′ = G′0(c− c?)t , (S4)

where G′0 is a prefactor, t is the critical exponent, and c? is the percolation concentration.
From this power law it is evident that the elastic modulus of the soft gels becomes very
sensitive to the concentration of the prepolymer mixture when the concentration of the
prepolymer mixture is close to c?.

As a result, we cannot directly use the elastic modulus obtained from macroscopic
rheological measurements to characterize our soft gels in the sample cells (∼160 µm
thick), because a little change of the concentration of the prepolymer mixture during
preparation of the gels can lead to a significant difference of the elastic modulus. In
experiment, the concentration of the prepolymer mixture in the sample cells is difficult
to control precisely, because the concentration can change slightly if some prepolymer
molecules are adsorbed to the walls of the cell, to the pipette tips, or to the paramagnetic
particles.

In order to solve this problem, we measured the elastic modulus of the soft gels directly
in the sample cells (containing the paramagnetic chains) by passive microrheology (i.e.,
particle tracking). About 15 single particles were used as the mechanical probes, and a
fast camera (Photron, FASTCAM SA1) and a microscope (Leica DMI6000B) were used
to detect the thermal fluctuations of the particles.S4,S5 Fig. S4a shows the mean-square
displacement (MSD) of the particles in the gels as a function of lag time. At long lag times
the MSD levels off, indicating that the particles are confined in a network. The moduli
of the gels can be calculated from the MSD of the particles based on the generalized
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Figure S4 Probing the viscoelastic properties of the gels in the sample cells (containing the para-
magnetic chains). (a) Mean-square displacement (MSD) of the particles in the gels as a function
of lag time. The concentrations of the prepolymer mixture for the four samples A–D are 2.78 wt%,
2.77 wt%, 2.76 wt%, and 2.76 wt%, respectively. The slight changes of concentration can lead
to significant differences in the MSD, because the concentration used here is close to the per-
colation threshold (c? = 2.74%, see Fig. S3b).S3 It is the method of passive microrheology that
makes it possible to measure the viscoelastic properties of the soft gels (containing the paramag-
netic chains) directly within the sample cells. (b) Elastic modulus (G′) calculated from the MSD.
(c) Elastic modulus (G′) and loss modulus (G′′) plotted as functions of angular frequency (ω) for
sample C. At low frequencies, the elastic character dominates.

Stokes-Einstein relation (GSER)S4,S6

G∗(ω) =
kBT

πR(iω)Fu{MSD(t)}
, (S5)

where G∗(ω) is the complex shear modulus and Fu{MSD(t)} is the unilateral
Fourier transform (F{ f (t)} =

∫
∞

0 e−iωτ f (τ)dτ). Using the algorithm from Crocker and
Weeks,S4,S5 we calculated the shear moduli (Fig. S4b). Fig. S4c shows that at low fre-
quencies (corresponding to long time scales) the gel is mainly elastic. In the main article
we use the elastic modulus of the gels obtained from passive microrheology to character-
ize the gels.
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2.4 Magnetic field of the Halbach magnetic array

We used permanent magnets to provide a homogeneous magnetic field.S7 The NdFeB
permanent magnets were purchased from AR.ON GmbH. According to the manufacturer
they have a remanence of 1.32 T. The magnets were arranged as shown in Fig. 1a. The
magnets had dimensions of 8×8×15 mm3 and 14×14×15 mm3 for the inner and outer
rings, respectively. The magnetic field at the center of this magnetic array was homoge-
neous (Fig. S5). This magnetic array was built around the objective of our home-built
LSCM and it could be rotated by a motor. We put the samples in the middle of this array
and used LSCM to observe the samples under the magnetic field. The typical observation
area was in the central 2 mm2, where the homogeneity of the magnetic field was ∼ 2 000
ppm (Fig. S5b).

Figure S5 Comparison of measured and simulated magnetic flux density in the Halbach magnetic
array. The arrangement of the 32 permanent magnets is shown in Fig. 1a. (a) Magnitude B of the
magnetic flux density along the x-axis. The red solid curve shows simulation results using Comsol
software. The solid black points are experimental data (measured by a Lake Shore Model 425
Gaussmeter with a transverse probe). The data for x around 0 are shown in (b). The homogeneity
in the central 2 mm2 is ∼ 2 000 ppm. (c) Simulated magnetic field in the magnetic array. The
magnetic flux density is shown by color map and the direction of the magnetic field is shown by
red arrows.

The magnetic field of this magnetic array was simulated in Comsol Multiphysics
(http://www.comsol.com). The parameters for the simulation were the same as in the
experiments, such as the positions, the dimensions, and the remanence (1.32 T) of the
magnets. The permanent magnets were modeled using Ampère’s law. The influence of

6



the housing (made of Aluminum) of the magnets was not considered. A detailed descrip-
tion of the simulation can be found in the model library of Comsol Multiphysics, “Static
Field Modeling of a Halbach Rotor”.

Figure S6 Magnetic field of the four-magnet Halbach array. (a) By changing the separation be-
tween the 4 magnets, the magnetic flux density at the center of the magnetic array can be changed.
The red circle points are obtained from simulation using Comsol software, and the black square
points are measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The ho-
mogeneity in the central 2 mm2 is ∼ 4000 ppm. (b) Simulated magnetic field in the four-magnet
array. The magnetic flux density is shown by color map and the direction of the magnetic field is
shown by red arrows.

In some experiments we needed to change the magnetic field strength. This was re-
alized by using a four-magnet Halbach array (Fig. S6, the magnets had dimensions of
14× 14× 15 mm3). By changing the distance between the magnets, the magnetic flux
density in the center of this array could be changed from 0 mT to 101 mT. The homo-
geneity of this array in the central 2 mm2 was ∼ 4000 ppm.

2.5 Bending rigidity of the paramagnetic particle chains

Here we provide experimental evidence that the paramagnetic particle chains already by
themselves (i.e. without the embedding polymer matrix) feature a bending rigidity. For
this purpose, instead of preparing a percolating polymer network (gel), we prepared a
sol. We decreased the concentration of the prepolymer mixture to c?/2 (c? is the crit-
ical concentration at which a percolating network can be formed, see Fig. S3b). The
prepolymer mixture reacted and formed a sol after the catalyst was added. During the
reaction a magnetic field of 100.8 mT was applied, thus the magnetic particles in the sol
aligned into chains. If the particles had not been connected by the polymer, the linear
particle chains would not have survived after the magnetic field was removed because of
thermal agitation. However, we found that the linear particle chains were stable in the
sol even for several days (Fig. S7a). Once more applying a magnetic field (18.7 mT)
most of the permanent paramagnetic chains in the sol aligned along the magnetic field
direction (Fig. S7b). However, some of the chains bent and showed hairpin or “S”-shape
morphologies (marked by the red arrows in Fig. S7b), indicating that the chains had a
bending rigidity.S8
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Figure S7 Typical chain morphologies in the sol (a) in the absence of a magnetic field and (b)
under a magnetic field. The magnetic field of 18.7 mT was applied horizontally. Under the mag-
netic field most of the paramagnetic chains aligned along the magnetic field direction. Some of the
chains bent and showed hairpin or “S”-shape morphologies (marked by the red arrows), indicating
that they have a bending rigidity.S8 The scale bars are 50 µm.

We conjecture that some prepolymer molecules in the solution were adsorbed onto
the surfaces of the paramagnetic particles. When the prepolymer cross-linked, a poly-
mer layer on the surfaces of the particles was formed and connected the particles. This
polymer layer contributed to the bending rigidity. Only when the concentration of the pre-
polymer mixture is higher than c?, a gel can be formed in the bulk. Apparently, already
below this concentration, a connecting polymer layer can be formed on the surfaces of the
paramagnetic particles. This suggests that a thin layer of polymer with a higher modulus
compared to the bulk should be considered to understand the buckling behavior of the
paramagnetic chains in the soft gels.

2.6 Buckling of magnetic particles in a “stiff” gel

In the main article, very soft gels (<1.5 Pa) were used as a matrix. If a stiffer gel
was used, the paramagnetic particle chains could not deform the gel significantly under
the magnetic field of 216 mT (maximum field in our set-up). Here we used carbonyl
iron (CI, CC grade, BASF, Germany, d50 value=3.8-5.3 µm) as magnetic particles in
order to increase the magnetic force between the magnetic particles. First, the saturation
of magnetization of CI (∼ 250 Am2/kg) is significantly larger than that of our otherwise
used paramagnetic particles (∼ 20 Am2/kg); second, the density of CI (∼ 8×103 kg/m3)
is higher than that of our paramagnetic particles (∼ 1.7×103 kg/m3); last, the size of CI
is about 3 times larger. According to m = 4πR3ρM/3 (see Section 2.2), the magnetic
moment can be 103 times larger compared to our paramagnetic case in the main article.
As a result, even in a relatively “stiff” gel, the CI magnetic chains can deform the gel
significantly. As shown in Fig. S8, in the gel with an elastic modulus of 170 Pa, the CI
chains can buckle when a magnetic field of 100.8 mT is applied.

However, promoted by the polydispersity of the CI particles, the CI chains are not as
smooth as the chains formed by the monodisperse paramagnetic particles (see Figs. 1 and
2 in the main article for comparison). In addition, we also observed fractures in some CI
chains (Fig. S8c) probably due to the polydispersity of the particles. However, the chains

8



Figure S8 Magnetic chains formed by carbonyl iron particles in a gel with an elastic modulus of
170 Pa. (a) Without magnetic field, (b, c) under a magnetic field of 100.8 mT along the vertical
direction. The inset in (c) shows an enlarged image of the fracture of the magnetic chain. The
scale bars are 50 µm. These images were obtained using a 10× objective (NA=0.28, M Plan Apo)
which collected the reflection light from the carbonyl iron particles.

do not break up into structures as shown in Fig. 9 of the main article (lower image),
suggesting that there is still a relatively stiff polymer layer around the CI particles.
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3 Supplementary information concerning the modeling

3.1 Magnetic interactions within the chain

In the following, we derive Eqs. (1) and (2) of the main article. We start from two neigh-
boring particles on the chain. According to the assumptions made in the main article,
each of them carries a magnetic moment m oriented in y-direction. They interact via the
dipole-dipole magnetic interaction given by

Vdd =
µ0

4π

[
m ·m

r3 − 3(m · r)(m · r)
r5

]
, (S6)

where r is the vector joining the centers of the particles, r = |r|, and µ0 is the vacuum
magnetic permeability. Since the particles on the chain are experimentally observed to
remain in contact, we have r = d, with d the particle diameter. Furthermore, we ignore
the first term in the square brackets because it is constant under the given assumptions.
Indicating by α the angle between r and m, we obtain

Vdd ∼ −
3µ0m2

4πd3 cos2
α. (S7)

Since m is oriented in the y-direction, ψ = π/2−α is the angle between r and the x-
axis. Skipping another constant term resulting from cos2 α = 1− sin2

α , the non-constant
part of the dipole-dipole interaction can thus be rewritten as

Vdd ∼ εm sin2(ψ−π/2), with εm =
3µ0m2

4πd3 . (S8)

For an undeformed infinite straight chain oriented along the x-axis in the above set-up,
the resulting expression for the total dipolar magnetic interaction energy per particle along
the whole chain then reads

V chain
dd ∼ εm

∞

∑
n=1

1
n3 = εmζ (3), (S9)

where ζ is the Riemann Zeta function and ζ (3) ' 1.202. Here, εm sets the scale of the
nearest-neighbor dipolar interaction. In our minimal model the correction described by
the factor ζ (3) ' 1.202 due to higher-order neighbors is negligible. Since the contour
lines of the magnetic chains preserve a smooth shape under the observed deformations,
without any kinks, and as the chains do not fold back onto themselves, we thus confine
ourselves to nearest-neighbor interactions.

For a large number of particles, the quantity εm sets the magnetic interaction energy per
particle. Moreover, the total magnetic interaction energy scales approximately linearly
with the number of particles and chain length.

We now switch to a continuum picture by specifying the line energy density along
the magnetic chain. In our coordinate system, the angle ψ that the connecting vec-
tor r between two neighboring particles forms with the x-axis is locally given by ψ ∼
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arctan [y′(x)], where y′(x) = dy/dx. To obtain the resulting magnetic energy of the whole
magnetic chain, we need to integrate the energy line density along the contour line. For
simplicity, we transform this line integral to an integration along the x-axis. If we param-
eterize the contour line by the parameter s, the line element ds along the chain can be
expressed as ds =

√
1+ y′(x)2 dx. Therefore, the magnetic energy becomes

Emagn[y] =W
∫ x2

x1

sin2
{

arctan
[
y′(x)

]
− π

2

}√
1+ y′(x)2 dx

=W
∫ x2

x1

1√
1+ y′(x)2

dx, (S10)

where

W =
εm

d
=

3µ0m2

4πd4 (S11)

is the magnetic energy per unit length and x1,x2 are the x-coordinates of the end points of
the chain.

3.2 Elastic bending energy

Next, we briefly sketch the derivation of the elastic bending energy in Eq. (3) of the main
article. For this purpose, we consider a parameterization R(s) of the contour line of the
magnetic chain, where the positions R mark the points on the contour line and s ∈ [s1,s2]
with s1 and s2 labeling the end points of the chain. On this basis, the elastic bending
energy is defined asS9

Ebend =Cb

∫ s2

s1

∣∣∣∣d2R(s)
ds2

∣∣∣∣2 ds. (S12)

Using the parameterization R = (x,y(x)) and ds =
√

1+ y′(x)2 dx, we obtain

dR
ds

=
(

1+ y′(x)2
)− 1

2
(

1
y′(x)

)
(S13)

and
d2R
ds2 = y′′(x)

(
1+ y′(x)2

)−2
(
−y′(x)

1

)
. (S14)

From this last expression, we obtain Eq. (3) in the main article when we again transform
the line element ds to Cartesian coordinates, ds =

√
1+ y′(x)2 dx.

3.3 Elastic displacement energy

Finally, we motivate the expression for the elastic displacement energy in Eq. (4) of the
main article. The part [y(x)]2 corresponds to a lowest order term in the displacement y(x).
We weight each of the two displacement factors y(x) by the amount of chain material
displaced per integration interval dx, given by the length of the chain per integration
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Figure S9 Experimentally observed rotation angles of magnetic chains in a gel of shear modulus
G′ = 0.25 Pa under a perpendicular magnetic field of magnitude B = 18.7 mT. To first approxi-
mation, a rigid rotation of straight chains occurs at small enough rotation angles. This is depicted,
for instance, in Fig. 1c of the main article for small angles of the magnetic field.

interval dx, i.e. ds/dx =
√

1+ y′(x)2. This leads to [y(x)]2
[
1+ y′(x)2]. In addition to

that, we have another factor
√

1+ y′(x)2, again from transforming the line element ds
of the integration to Cartesian coordinates, ds =

√
1+ y′(x)2 dx. In total, we obtain the

expression in Eq. (4) of the main article.

We explain in the following why the experimental observations suggest this form as a
lowest order term. In particular, we note that the experimental investigations suggest the
form [y(x)]2 rather than one containing the first derivative [y′(x)]2. For this purpose, we
consider the case of straight chains (M = 0) undergoing small rotations in a perpendicular
magnetic field. This situation can be simply parameterized by y(x) = Sx, where S = tanψ

and ψ as introduced above giving the rotation angle. Furthermore Ebend = 0.

For y(x) = Sx, Emagn scales linearly with the chain length L. The same would apply for

an energetic contribution∼
∫ x2

x1
[y′(x)]2

[
1+ y′(x)2]3/2 dx. Therefore, the latter expression

inevitably leads to a rotation angle ψ that is independent of the chain length L. However,
this contradicts the experimental results. In Fig. S9 we plot the rotation angle ψ as a
function of chain length L measured in a gel of shear modulus G′ = 0.25 Pa exposed to
a perpendicular magnetic field of magnitude B = 18.7 mT. There is a clear dependency
of the rotation angle on the chain length L. The energetic expression Edispl in Eq. (4)
of the main article for rotations of straight chains y(x) = Sx scales as Edispl ∼ L3 and
thus leads to disproportionally higher energetic penalties for longer chains, reflecting the
experimentally observed smaller rotation angles.

3.4 Discussion of resulting chain shapes

Now that our total model energy Etot is set as the sum of Eqs. (1), (3), and (4) in the
main article, a standard route to determine the shape y(x) of the chain would be to find
the extrema of the functional Etot [y(x)] with respect to the function y(x). For this purpose,
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one calculates the functional derivative of Etot [y(x)] with respect to y(x) and equates it
with zero. The procedure is well known from the famous brachistochrone problem.S10

There one wishes to find the shape of a curve linking two end points such that a body
moving between them under gravity passes the distance in the least possible amount of
time.

However, there is a fundamental difference compared to the brachistochrone problem.
While calculating the functional derivative, boundary terms appear that explicitly include
contributions from the end points of the chain or trajectory y(x). Technically, they result
from partial integration. In the brachistochrone problem, one has sufficient information
to handle these boundary terms: by construction of the problem, one knows that the end
points are fixed. Similarly, in other problems of infinitely extended elastic struts of pe-
riodic, periodically modulated, or localized deformations,S11–S14 one can use the period-
icity or localization to argue in favor of an evanescent influence of the boundary terms.
This is very different from our present case, where the deflection encompasses the whole
finite chain and in particular its end points. Unfortunately, acquiring sufficient knowledge
of the associated boundary conditions would imply solving the whole complex three-
dimensional nonlinear elasticity and magnetization problem, which is beyond the present
scope and in fact was the reason to project to our reduced minimal model.

For completeness, however, we perform some additional variational analysis of our
energy functional. We concentrate on possible solutions in the bulk that could be observed
if boundary effects were absent (which is not the case for our experimentally investigated
finitely-sized objects). Then, neglecting the boundary terms, the functional derivatives of
Eqs. (1), (3), and (4) are calculated as follows (the dependencies of y(x) and its derivatives
on x is omitted for brevity on the right-hand sides):

δEmagn

δy(x)
=Wy′′

(
1−2y′2

)(
1+ y′2

)− 5
2
, (S15)

δEbend

δy(x)
=Cb

[
5y′′3

(
6y′2−1

)
−20y′y′′y′′′

(
1+ y′2

)
+2y′′′′

(
1+ y′2

)2
](

1+ y′2
)− 9

2
,

(S16)
and

δEdispl

δy(x)
=Cd

[
2y−2yy′2−4yy′4−3y2y′′−6y2y′2y′′

](
1+ y′2

)− 1
2
. (S17)

Together, we obtain a nonlinear fourth-order differential equation for y(x):

δEtot

δy(x)
=
(

1+ y′2
)− 9

2

[
−
(

1+ y′2
)

y′′
(

W
(
−1+ y′2 +2y′4

)
+20Cby′y′′′

)
−3Cdy2

(
1+ y′2

)4(
1+2y′2

)
y′′+5Cb

(
−1+6y′2

)
y′′3

−2Cdy
(

1+ y′2
)5(
−1+2y′2

)
+2Cb

(
1+ y′2

)2
y′′′′
]
= 0. (S18)

Eq. (S18) can in principle be solved numerically by integrating it outward from the
center of the chain at x = 0. For this purpose, a sufficient amount of “initial conditions”
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Figure S10 Numerical solutions of Eq. (S18) for different imposed input conditions. In all cases
we concentrate on uneven centro-symmetric solutions and thus prescribe y(0) = y′′(0) = 0. As
remaining necessary conditions, we specify the position of the first maximum: (a) y′(0.5) = 0,
y(0.5) = 0.205; (b) y′(0.5) = 0, y(0.5) = 0.2; (c) y′(0.3) = 0, y(0.3) = 0.16; (d) y′(0.5) = 0,
y(0.5) = 0.1.

(four in our case) for y(x) and its derivatives needs to be provided. We concentrate on
uneven centro-symmetric solutions, which directly prescribes two conditions: y(0) = 0
and y′′(0) = 0. As was found before in a different context,S11 the solution is extremely
sensitive to the two remaining imposed conditions. For illustration, we depict four ex-
amples in Fig. S10. There, we provide slightly varying positions of the first maximum
[y′(x) = 0] as the remaining two necessary conditions. Numerical integration shows that
little variations in these conditions lead to qualitatively different oscillatory solutions.S15

Altogether, we may conclude that the solutions resulting from Eq. (S18) sensitively
depend on the input conditions. As noted above, we do not have access to the appropriate
conditions applying at the significantly displaced end points of the embedded chain. The
strategy that we resorted to is therefore to use as an input directly the shapes of the chains
suggested by the experiments. We found good representations of the experimental obser-
vations using the polynomial form suggested by Eq. (5) in the main article. In particular,
with regard to the pronounced displacements of the chain ends, this choice is preferred to,
for instance, a sinusoidal ansatz. Then, instead of solving Eq. (S18) explicitly, we mini-
mize the energy functional Etot [y(x)] with respect to the remaining degrees of freedom of
the chain deformation (M, S, x1 and x2 in the main article). Thus, even if we have used
an ansatz for the chain deformation, this remains a nonlinear approach as we evaluate the
nonlinear contributions to the energy functional Etot [y(x)].

3.5 Oscillatory solutions in the linear regime

In the previous part, we have demonstrated that various complex solutions can result
from the nonlinear nature of Eq. (S18). Here, we restrict ourselves to the situation in
the inside of the magnetic chains for small amounts of deformation, i.e. at the onset of
deformation. For this purpose, a linear stability analysis is performed by considering a
linearized version of Eq. (S18). As a result, we obtain a condition describing the onset of
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a linear deformational instability

Wy′′(x)+2Cb y′′′′(x)+2Cd y(x) = 0. (S19)

This equation has solutions of the kind y(x)∼ exp(±iqx), with wavenumber

q2 =
W ±

√
W 2−16CbCd

4Cb
. (S20)

The condition for the solutions to be purely oscillatory is W 2/16CbCd > 1 and defines
an onset for this kind of deformation. It sets a threshold magnitude for the strength of
the external magnetic field. Thus, for a perfectly oriented chain of identical particles in a
spatially homogeneous elastic matrix, this linear stability analysis predicts a critical mag-
netic field amplitude above which an undulatory instability would arise in the inside of
the chain. Our results are in agreement with the experimental observation of the wrinkles
at onset in Fig. 1c and the final oscillatory shape in the inner part of the longer chains in
Fig. 2a of the main article.
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4 Technical description of the coarse-grained molecular
dynamics simulations

4.1 Magnetic particles

In the molecular dynamics simulations, the centers of the magnetic particles and the nodes
of the polymer mesh are treated as point particles in two-dimensional space. The mag-
netic particles additionally have one rotational degree of freedom, namely around the axis
perpendicular to the model plane. As each magnetic particle is superparamagnetic, its
magnetic moment is not affected by a rotation of the particle. Rather, the magnetic mo-
ment is determined by the magnetic field. Hence, we place the magnetic moment not
on the rotating center of the particle, but rather on a separate virtual site which does not
rotate. It is placed at the same location as the center of the magnetic particle. Virtual
sites are particles, whose position is not determined by integrating an equation of motion,
rather their position is calculated from the position and orientation of other particles. In
this way, they allow us to introduce rigid extended bodies into a molecular dynamics sim-
ulation.S16 Forces acting on any constituent of such a rigid body are transferred back to
its center of mass, and thus included in the equation of motion of the rigid body.

Pairs of magnetic particles interact by the dipole-dipole interaction, Eq. (S6). The
dipole moment of the particles is assumed to be determined entirely by the external
magnetic field, and its magnitude is deduced from the experimental magnetization curve
(Fig. S1b). This assumption is valid as long as the external field is much stronger than
the field created by the other magnetic particles. In other cases, a self-consistent ap-
proach has to be used to determine the local magnetic fields. In addition to the dipole-
dipole interaction, the magnetic particles interact via a truncated and shifted, purely re-
pulsive Lennard-Jones potential mimicking a rigid-sphere interaction. We use the Weeks-
Chandler-Andersen potentialS17 in the form

VWCA

( r
σ

)
=


4ε

[( r
σ

)−12−
( r

σ

)−6
+ 1

4

]
for r ≤ rc,

0 otherwise,
(S21)

where r is the distance between the particle centers, ε = 1000 denotes the energy scale of
the potential, and rc = 21/6σ is the cut-off distance, for which we use the experimental
diameter of 1.48 µm. The parameter σ denotes the root of the non-shifted potential and
is used in the visualizations in Figs. 9 and 10.

4.2 Polymer mesh

The polymer matrix is modeled as a bead-spring network based on a hexagonal lattice.
We use a lattice constant a of one third of the experimentally observed particle diameter,
i.e., a ≈ 0.49 µm. Along the initial chain direction, we use 601 mesh points, along the
perpendicular direction 301. The mesh points on the boundary of the system are fixed, all
other mesh points can move in the x- and y-directions. Adjacent mesh points interact via
a non-linear elastic spring based on the FENE-potential.S18 Here, we use a variant with
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different cut-off values for compression and expansion. It is given by

V (r) = − 1
2 K (r0− rmin)

2 ln
[

1−
(

r−r0
r0−rmin

)2
]

for r < r0,

V (r) = − 1
2 K (rmax− r0)

2 ln
[

1−
(

r−r0
rmax−r0

)2
]

for r > r0.

(S22)

In these expressions, K = 45 controls the scale of the potential, the equilibrium distance
r0 = a is equal to the lattice constant, while the minimum and maximum elongations, at
which the potential diverges, are rmin = 0.1a and rmax = 3a, respectively. The potential,
as well as its second derivative, are continuous at the equilibrium extension r = r0. In
order to prevent any volume element from shrinking to zero, angular potentials are used
on all pairs of neighboring springs attached to the same mesh site, encompassing an an-
gle of 60◦ in the unstrained mesh. The potential has the same functional form as the
distance-based potential in Eq. (S22), but with the values K = 100, r0 = π/3, rmin = 0,
and rmax = π . In the simulations both potentials are tabulated at 100000 equally spaced
intervals between the minimum and maximum extensions. Between those points, linear
interpolation is used.

4.3 Particle-mesh coupling and boundary layer

The mesh spans the entire simulation area, including the area covered by the magnetic
particles. In order to couple the polymer mesh to both, the translational and rotational
motion of a magnetic particle, the seven mesh sites within the area of each magnetic par-
ticle are treated as virtual sites, rigidly following the motion of the magnetic particle. In
other words, the mesh sites within the particle and the center of the magnetic particle
form a rigid body. This additionally prevents a distortion of the gel matrix in the area
occupied by the magnetic particles. Two variants of gel boundary layer around the parti-
cles are studied (Fig. 9 in the main article). In the case of a soft boundary layer, the mesh
springs emerging from the mesh sites rigidly connected to the particle, are modeled as in
Eq. (S22) with the same parameters as for the bulk. In the case of a stiff boundary layer, a
potential is used which is stiffer by three orders of magnitude. The following parameters
are used in this case: K = 45000, rmin =−2a, and rmax = 4a.

4.4 Equation of motion and integration

The simulations are performed in the canonical ensemble at a temperature of 300 K. All
particles except for the virtual sites are propagated according to a Langevin equation. For
any component in a Cartesian coordinate system, it is given by

mpv̇(t) =−γv(t)+F +Fr, (S23)

where mp denotes the mass of the particle, v its velocity, F is the force due to the in-
teraction with other particles, Fr denotes the random thermal noise, and γ is the friction
coefficient. To maintain a temperature T , the thermal noise has to have a mean of zero
and a variance of

〈F2
r 〉= 2kBT γ, (S24)
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where kBT denotes the thermal energy. For the rotational degree of freedom of each
magnetic particle, the same equation of motion is used, but mass, velocity, and forces are
replaced by moment of inertia, angular velocity, and torques, respectively. The friction
coefficient, the thermal energy, and the mass of the mesh sites are all chosen to be unity,
whereas the mass and rotational inertia of the centers of the magnetic particles are both
100. This slows down the relaxation time of the magnetic particles versus that of the
polymer mesh and is helpful in stabilizing the simulation. The Langevin equation is
integrated using a Velocity Verlet integrator. For the simulations with a stiff boundary
layer, the time step is dt = 0.001, for a soft boundary layer it is dt = 0.00004. The
simulations take approximately 100000 time steps to converge.
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[S1] F. Ziemann, J. Rädler and E. Sackmann, Biophys. J., 1994, 66, 2210–2216.

[S2] A. R. Bausch, W. Möller and E. Sackmann, Biophys. J., 1999, 76, 573–579.

[S3] P. Tordjeman, C. Fargette and P. H. Mutin, J. Rheol., 2001, 45, 995–1006.

[S4] T. G. Mason, T. Gisler, K. Kroy, E. Frey and D. A. Weitz, J. Rheol., 2000, 44,
917–928.

[S5] http://www.physics.emory.edu/faculty/weeks//idl/index.html.

[S6] T. G. Mason and D. Weitz, Phys. Rev. Lett., 1995, 74, 1250–1253.
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