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Materials and Methods 

Materials. 

All chemicals were purchased from Sigma-Aldrich and were used as received without further 

purification, unless otherwise specified. N-isopropylacrylamide (NIPAm), N,N'-methylene-bis-

acrylamide (MBA), ammonium persulfate (APS). Methacrylic acid (MAA) was purified by distillation. 

 

Microgel synthesis and characterization. 

Synthesis. Microgel synthesis was performed according to Zavgorodnya, et al.
1 

100 mL solution 

containing 12 mmol of NIPAm and 0.28 mmol of BIS in Milli Q water was heated up to 70 °C with 

magnetic stirring and purged with N2 in a three-neck 250 mL round-bottom flask for 1h. Thereafter, 

1.72 mmol of MAA was added and the solution was stirred during 5 min. Finally, the reaction was 

initiated by adding 0.046 g of APS dissolved in 1 mL of Milli Q water at room temperature. After 4 

hours, microgels were purified by centrifugation/re-suspension in water three times. 
1
H NMR spectrum 

and assignments of resonance signals are shown in Figure S1.  
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Figure S1. 
1
H NMR spectrum with assignments for a P(NIPAm-co-MAA) microgel. 

 

The microgel composition of the microgel was estimated from 
1
H NMR spectrum: 65% NIPAm and 

35% MMA (0.65:0.35). 

 

Dinamic light scattering (DLS) measurement. 

The microgel particle size and size distribution of PNIPAm-based microgels were determined by 

dynamic light scattering (DLS) as a function of temperature using a Zetasizer Nano-ZS90 instrument 

(Malvern Instruments Ltd.). Figure S2 shows the variation of the hydrodynamic diameter, DH, as a 

function of temperature when microgels are in pure water at 1 and 5 mg/mL concentration. 
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Figure S2. Swelling curves of P(NIPAm-co-MMA) microgels at different microgel concentrations in 

pure water resulting from dynamic light scattering experiments.  

In order to complete the DLS results, , polydispersity (PDI) values for microgel suspensions at 14, 18 

and 40°C are present in table S1. 

Table S1. PDI values for microgel suspensions at 14, 18 and 40°C. 

 

 

 

Figure S3 shows photographs of the microgel suspensions at 14, 28 and 40 °C. The clearly visible 

differences in turbidity of the microgel suspensions indicate the collapsed state at 40°C, while at 14 and 

28°C the solution appearance is similar. 

 

Microgel 
concentration 

PDI 

14°C 28°C 40°C 

1 mg/ml 0,240 0,136 0,028 

2,5  mg/ml 0,292 0,242 0,053 

5  mg/ml 0,180 0,248 0,045 



 

Figure S3. Photographs of the microgel suspensions at 14, 28 and 40 °C 

 

NMR relaxation experiments 

Relaxation measurements were performed in a Brukerminispec spectrometer operating at 20 MHz for 

1
H equipped with a BVT3000 sample temperature controller with 0.01 ºC stability. Samples consisting 

of 0.7 mL of the microgels solutions were placed in a 10 mm NMR tube. Temperature was increased 

from 17 ºC to 31 ºC every 2°C, allowing the system to thermally stabilize for at least one hour between 

each measurement. 

Transverse proton relaxation times (T2) were measured using a Carr−Purcell−Meiboom−Gill
2,3

(CPMG) 

sequence which was applied after a magnetization inversion water suppression pulse. The water 

suppression waiting time was adjusted for each temperature. The CPMG parameters were: echo time 

0.5ms, number of echoes 10.000 echoes and the length of the 90º radiofrequency pulse was 2.5 Ds. 

With this echo time it can be assured that the detected signal arises only from water molecules and 

notfrom the polymer network, whose relaxation times were determined to be on the order 

ofmicroseconds. The resulting CPMG decay presents a multiple exponential decay, and the 

T2distribution functions were obtained by using an inverse Laplace transform (ILT) algorithm based 

onthe Tikhonov regularization method
4
provided by Dr.PetrikGalvosas from the Victoria University 

ofWellington, New Zealand. 



Molecular theory  

To gain understanding on what nanometer-scale interactions determine the unusual behavior of 

pNIPAm-co-MAA)microgels, we use a theory that accounts for specific molecular details of the 

polymer network as well as its conformational degrees of freedom. This molecular theory explicitly 

considers size, shape and charge of all species, their physical interactions as well as the acid-base 

equilibrium of each titratable MAA unit of the polymer network. The formation of hydrogen bonds 

between NIPAm and MAA is described using an effective ligand-receptor binding interaction.The 

method does not assume the state of protonation and binding of each group, but it predicts them 

depending on the local molecular organization and the optimal conditions that minimize the total free 

energy of the system. This theoretical approach was first introduced to investigate the response of 

hydrophilic polyacid gels to changes in the pH and salt concentration of a buffer solution
1
. 

We are most interested in showing that the interplay, inside each individual microgel, between 

the physical interactions and chemical equilibriums (acid-base and ligand-receptor) can qualitatively 

explain the behavior observed in our DLS and NMR experiments. Thus, we consider a single microgel, 

modeled as a large polymer network. When discussing results, the interaction with other microgels is 

thought as external force acting on the polymer network, such that its balance with the intra-microgel 

interactions that we account for determines the equilibrium size (or equivalently, the polymer volume 

fraction) of the microgel. 

Let us then consider a polymer network composed by both MAA and NIPAm segments. The 

polymer is in contact with a buffer solution that contains water (𝑤), hydroxide ions (𝑂𝐻−), protons 

(𝐻+), salt cations (+) and anions (−) due to the complete dissociation of the added salt (KCl, for 

example). This solution provides a bath for all of the free (or mobile) species, fixing their chemical 

potentials that are the same in all regions of space, in the bath solution and inside the microgel. The 

initial step in this theoretical procedure consists in writing down the total Helmholtz free energy of the 

system: 

𝐹 = −𝑇𝑆𝑁 − 𝑇𝑆𝑇 + 𝐹𝐵 + 𝐹𝐴𝐵 + 𝑈𝐸  

where𝑇 is the temperature. The first term describes the conformational entropy of the network, which 

can be expressed as:  



𝑆𝑁 = −𝑘𝐵  𝑃 𝛼𝑁 ln 𝑃 𝛼𝑁 

𝛼𝑁∈ 𝛼𝑁  

 

where𝑘𝐵  is the Boltzmann constant, and 𝑃 𝛼𝑁  is the probability of finding the polymer network in its 

molecular conformation 𝛼𝑁 . A conformation is defined by the position of all segments of the network. 

The symbol  𝛼𝑁  denotes the set of all conformations of the polymer. The next term in the free energy 

includes the translational entropy of mobile molecules plus the self-energy of each species. This 

entropic contribution can be written as: 

𝑆𝑇 = −𝑘𝐵   𝑑r 𝜌𝑖 r  ln 𝜌𝑖 r 𝑣𝑤 − 1 + 𝛽𝜇𝑖
0 

𝑉𝑖∈ 𝑤,𝑂𝐻−,𝐻+,−,+ 

 

where𝜌𝑖 r  and 𝜇𝑖
0 are respectively the local number density and the standard chemical potential of free 

species 𝑖 (with 𝑖 ∈  𝑤, 𝑂𝐻−, 𝐻+, −, + ). The volume of the system is 𝑉, 𝑣𝑤  is the volume of a water 

molecule, and 𝛽 =
1

𝑘𝐵𝑇
. 

The next contribution to 𝐹 results from the equilibrium binding between NIPAm and protonated MAA 

units of the network. This reaction can be expressed as:   

𝑀𝐴𝐴𝐴𝐻 +𝑁𝐼𝑃𝐴𝑚 ⇆ 𝑀𝐴𝐴 ∷ 𝑁𝐼𝑃𝐴𝑚 

where𝑀𝐴𝐴𝐴𝐻  denotes a protonated MAA segment and 𝑀𝐴𝐴 ∷ 𝑁𝐼𝑃𝐴𝑚 represents the complex 

between the two units. The chemical free energy that accounts for this binding at equilibrium can be 

written as: 

𝛽𝐹𝐵 =  𝑑r 𝜌𝑀𝐴𝐴
𝑝  r   𝑓𝐵 r  ln 𝑓𝐵 r + 𝛽𝜇𝐵

0 − 𝛽𝜇𝐹
0 +   1 − 𝑓𝐵 r  ln 1 − 𝑓𝐵 r  

  
𝑉

+ 𝑑r 𝜌𝑁𝐼𝑃𝐴𝑚  r  𝛽𝜇𝐹
0

𝑉

 

where𝜇𝐹
0  is the standard chemical potential of the unbound NIPAm unit and 𝜇𝐵

0  is that of the complex. 

Angle brackets in the last equation represent an ensemble average over the set of network 

conformations. Then, 



 𝜌𝑁𝐼𝑃𝐴𝑚  r  =  𝑃 𝛼𝑁 𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r 

𝛼𝑁∈ 𝛼𝑁  

 

is the average local density of NIPAm segments, while that of MAA units is 

 𝜌𝑀𝐴𝐴  r  =  𝑃 𝛼𝑁 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r 

𝛼𝑁∈ 𝛼𝑁  

 

where𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r  and 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r  are the local density of NIPAm and MAA units, respectively, 

when the network is in its conformation 𝛼𝑁 . The local quantity  𝜌𝑀𝐴𝐴  r   gives the density of MAA 

units independently of their chemical states (bound, protonated or deprotonated). Similarly, 

 𝜌𝑁𝐼𝑃𝐴𝑚  r   does not consider the local binding state (free or bound) of NIPAm units. 

Moreover, we introduce the local density of paired MAA units, 𝜌𝑀𝐴𝐴
𝑝  𝛼𝑁 ,r , which gives the 

local density of MAA segments that have at least one NIPAm unit within a distance 𝑙𝑝𝑎𝑖𝑟 , for network 

conformation 𝛼𝑁 . In our theory, only paired MAA segments can bind NIPAm. Thus, the ensemble 

average density of paired MAA segments is given by 

 𝜌𝑀𝐴𝐴
𝑝  r  =  𝑃 𝛼𝑁 𝜌𝑀𝐴𝐴

𝑝  𝛼𝑁 ,r 

𝛼𝑁∈ 𝛼𝑁  

 

Note that the three conformation-dependent local densities 𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r , 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r  and 𝜌𝑀𝐴𝐴
𝑝  𝛼𝑁 ,r  

are inputs of this theory. A molecular model of the polymer network of interest must supply these 

quantities, for each 𝛼𝑁 ∈  𝛼𝑁  and at each r ∈ 𝑉. Then, these three functions introduce the molecular 

information of the network into the present theoretical approach. 

In the binding free energy, 𝑓𝐵 r  is the local degree of binding that gives the fraction of paired 

units that are bound. Namely, the local density of bound MAA segments is 

 𝜌𝑀𝐴𝐴
𝐵  r  = 𝑓𝐵 r  𝜌𝑀𝐴𝐴

𝑝  r   

The following term in the Helmholtz free energy is the chemical free energy that describes the 

acid-base equilibrium of (unbound) MAA units. This contribution can be expressed as: 



𝛽𝐹𝐴𝐵 =  𝑑r  𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r    𝑓𝑑 r  ln 𝑓𝑑 r + 𝛽𝜇𝐴−

0  
𝑉

+  1 − 𝑓𝑑 r    ln 1 − 𝑓𝑑 r  + 𝛽𝜇𝐴𝐻
0     

where𝜇𝐴𝐻
0  and 𝜇𝐴−

0  are the standard chemical potentials of  the protonated and deprotonated MAA unit, 

respectively. The local degree of dissociation, 𝑓𝑑  r , gives the fraction of unbound units that are 

charged; then, 

 𝜌𝑀𝐴𝐴
𝐴−  r  = 𝑓𝑑  r   𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴

𝑝  r    

gives the local density of charged MAA segments, while that of protonated units is given by 

 𝜌𝑀𝐴𝐴
𝐴𝐻  r  =  1 − 𝑓𝑑 r    𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴

𝑝  r    

The last contribution to the free energy is the electrostatic energy, 

𝛽𝑈𝐸 =  𝑑r [ 𝜌𝑞 r  𝛽𝜓 r −
1

2
𝛽𝜖 𝛻𝜓 r  

2
]

𝑉

 

where𝜓 r  is the electrostatic potential, and 𝜖 denotes the medium dielectric permittivity. The local 

charge density is 

 𝜌𝑞 r  =  𝑞𝑖𝜌𝑖 r 

𝑖∈ 𝑂𝐻−,𝐻+ ,−,+ 

+   𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r   𝑓𝑑  r 𝑞𝐴−  

where𝑞𝑖  is the electric charge of free species 𝑖, and 𝑞𝐴− is that of the deprotonated MAA unit.  

 Therefore, with all the previous expressions, the Helmholtz free energy can be explicitly written 

as: 



𝛽𝐹 =  𝑃 𝛼𝑁 ln 𝑃 𝛼𝑁 

𝛼𝑁∈ 𝛼𝑁  

+   𝑑r 𝜌𝑖 r  ln 𝜌𝑖 r 𝑣𝑤 − 1 + 𝛽𝜇𝑖
0 

𝑉𝑖∈ 𝑤,𝑂𝐻− ,𝐻+,−,+ 

+  𝑑r  𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r    𝑓𝑑 r  ln𝑓𝑑  r + 𝛽𝜇𝐴−

0  
𝑉

+  1 − 𝑓𝑑 r    ln 1 − 𝑓𝑑  r  + 𝛽𝜇𝐴−
0    

+  𝑑r 𝜌𝑀𝐴𝐴
𝑝  r   𝑓𝐵 r  ln𝑓𝐵 r + 𝛽𝜇𝐵

0 − 𝛽𝜇𝐹
0 

𝑉

+  1 − 𝑓𝑑 r    ln 1 − 𝑓𝑑  r  + 𝛽𝜇𝐴−
0    +  𝑑r 𝜌𝑁𝐼𝑃𝐴𝑚  r  𝛽𝜇𝐹

0

𝑉

+  𝑑r [ 𝜌𝑞 r  𝛽𝜓 r −
1

2
𝛽𝜖 𝛻𝜓 r  

2
]

𝑉

 

Two physical constraints must be satisfied by this free energy. First, at each point of space, the 

volume must be completely filled by some of the molecular species. This is the local incompressibility 

constraint that accounts for inter-molecular repulsions (excluded volume interactions), which can be 

expressed as: 

 𝑣𝑖𝜌𝑖 r 

𝑖∈ 𝑤,𝑂𝐻− ,𝐻+ ,−,+ 

+  𝜌𝑀𝐴𝐴  r  𝑣𝑀𝐴𝐴 +  𝜌𝑁𝐼𝑃𝐴𝑚  r  𝑣𝑁𝐼𝑃𝐴𝑚 = 1 

where 𝑣𝑂𝐻− , 𝑣𝐻+ , 𝑣− and 𝑣+ are the molecular volumes of corresponding free species, and 𝑣𝑀𝐴𝐴  and 

𝑣𝑁𝐼𝑃𝐴𝑚  are the volumes of the MAA and NIPAm segments, respectively. In addition, system must be 

electroneutral, which implies 

 𝑑r  𝜌𝑞 r  
𝑉

= 0 

The microgel is in equilibrium with a homogeneous buffer solution that provides a bath for all 

of the free species. The proper thermodynamic potential to describe the system is the Lagrange 

transform of the free energy having as independent variables the chemical potentials of the mobile 

species (excluding water molecules due to the incompressibility constraint). Then, we use the semi-

grand canonical potential 



𝛺 = 𝐹 −  𝜇𝑖𝑁𝑖
𝑖∈ 𝑂𝐻−,𝐻+,+,− 

 

where𝑁𝑖  is the total number of molecules of the given species in the system, and 𝜇𝑖  represents its 

chemical potential, which must be identical inside the microgel and in the bath solution. In the present 

formalism, 𝛺 can be more explicitly written as 

𝛺 = 𝐹 −  𝜇𝑖
𝑖∈ 𝑂𝐻− ,+,− 

 𝑑r 𝜌𝑖 r 
𝑉

− 𝜇𝐻+  𝑑r  𝜌𝐻+ r + 𝑓𝑑 r   𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r   + 𝑓𝐵 r  𝜌𝑀𝐴𝐴

𝑝  r   
𝑉

 

where the last integral properly accounts for the total number of protons in the system, including those 

that protonate the unbound, uncharged MAA units (MAAAH). 

The unknowns in 𝛺 consist of the probability distribution of network conformations, 𝑃 𝛼𝑁 , the 

local densities, 𝜌𝑤 r , 𝜌𝑂𝐻− r , 𝜌𝐻+ r , 𝜌− r  and 𝜌+ r , the local degree of binding, 𝑓𝐵 r , the local 

degree of charge, 𝑓𝑑  r , and the position-dependent electrostatic potential, 𝜓 r . Optimizing 𝛺 with 

respect to each of these functions, while considering the two aforementioned constrains, leads to 

expressions for each function. Then, the function to optimize is 

𝛽𝛷 = 𝛽𝛺 −  𝑑r
𝑉

𝛽𝜋 r   𝑣𝑖𝜌𝑖 r 

𝑖∈ 𝑤 ,𝑂𝐻−,𝐻+,−,+ 

+  𝜌𝑀𝐴𝐴  r  𝑣𝑀𝐴𝐴 +  𝜌𝑁𝐼𝑃𝐴𝑚  r  𝑣𝑁𝐼𝑃𝐴𝑚 − 1  

where 𝜋 r  are the local Lagrange multipliers that are introduced to satisfy the incompressibility 

constraint. Global charge neutrality, meanwhile, can be satisfied with the proper choice of boundary 

conditions for the electrostatic potential and its derivatives. Thus, the explicit function to optimize is  



𝛽𝛷 =  𝑃 𝛼𝑁 ln 𝑃 𝛼𝑁 

𝛼𝑁∈ 𝛼𝑁  

+   𝑑r 𝜌𝑖 r  ln 𝜌𝑖 r 𝑣𝑤  − 1 + 𝛽𝜇𝑖
0 

𝑉𝑖∈ 𝑤,𝑂𝐻−,𝐻+ ,−,+ 

+  𝑑r  𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r    𝑓𝑑  r  ln 𝑓𝑑  r + 𝛽𝜇𝐴−

0  
𝑉

+  1 − 𝑓𝑑  r    ln 1 − 𝑓𝑑  r  + 𝛽𝜇𝐴−
0    

+  𝑑r 𝜌𝑀𝐴𝐴
𝑝  r   𝑓𝐵 r  ln 𝑓𝐵 r + 𝛽𝜇𝐵

0 − 𝛽𝜇𝐹
0 +  1 − 𝑓𝐵 r   ln 1 − 𝑓𝐵 r    

𝑉

+  𝑑r 𝜌𝑁𝐼𝑃𝐴𝑚  r  𝛽𝜇𝐹
0

𝑉

+ 𝑑r [ 𝜌𝑞 r  𝛽𝜓 r −
1

2
𝛽𝜖 𝛻𝜓 r  

2
]

𝑉

−  𝛽𝜇𝑖
𝑖∈ 𝑂𝐻−,+,− 

 𝑑r 𝜌𝑖 r 
𝑉

− 𝛽𝜇𝐻+  𝑑r  𝜌𝐻+ r + 𝑓𝑑 r   𝜌𝑀𝐴𝐴  r  − 𝑓𝐵 r  𝜌𝑀𝐴𝐴
𝑝  r   + 𝑓𝐵 r  𝜌𝑀𝐴𝐴

𝑝  r   
𝑉

− 𝑑r
𝑉

𝛽𝜋 r   𝑣𝑖𝜌𝑖 r 

𝑖∈ 𝑤,𝑂𝐻−,𝐻+,−,+ 

+  𝜌𝑀𝐴𝐴  r  𝑣𝑀𝐴𝐴 +  𝜌𝑁𝐼𝑃𝐴𝑚  r  𝑣𝑁𝐼𝑃𝐴𝑚 − 1  

Optimization of 𝛽𝛷 with respect to the density of the free species yields 

 𝜌𝑖 r =
𝑒𝛽𝜇 𝑖−𝛽𝜇 𝑖

0

𝑣𝑤
exp −𝛽𝜋 r 𝑣𝑖 − 𝛽𝜓 r 𝑞𝑖 =

𝜌𝑖
𝑏𝑎𝑡𝑕

 𝑣𝑤𝜌𝑤𝑏𝑎𝑡𝑕  𝑣𝑖/𝑣𝑤
exp −𝛽𝜋 r 𝑣𝑖 − 𝛽𝜓 r 𝑞𝑖  

where𝜌𝑖
𝑏𝑎𝑡𝑕  is the density of species 𝑖 in the bath solution. These densities of the mobile species are 

completely determined by the pH and salt concentration of bath solution. The last expression holds for 

all free species, including water with 𝑞𝑤 = 0.  

Moreover, assuming that the medium permittivity is constant, we can express the probability of 

network conformations as: 

𝑃 𝛼𝑁 =
1

𝑄
exp  − 𝑑r

𝑉

𝜌𝑀𝐴𝐴
𝑝  𝛼𝑁 ,r ln 1 − 𝑓𝐵 r  −  𝑑r

𝑉

𝜌𝑀𝐴𝐴  𝛼𝑁 ,r  ln 𝑓𝑑 r + 𝛽𝜓 r 𝑞𝐴− 

−  𝑑r
𝑉

 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r 𝑣𝑀𝐴𝐴 + 𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r 𝑣𝑁𝐼𝑃𝐴𝑚  𝛽𝜋 r   



where the factor 
1

𝑄
 ensures that 

 𝑃 𝛼𝑁 

𝛼𝑁∈ 𝛼𝑁  

= 1 

For the local degree of dissociation of unbound MAA units, we obtain 

𝑓𝑑  r 

1 − 𝑓𝑑 r 
=
 𝑣𝑤𝜌𝑤

𝑏𝑎𝑡 𝑕  𝑣𝐻+/𝑣𝑤

𝑣𝑤𝜌𝐻+
𝑏𝑎𝑡 𝑕 𝐾𝑎

0exp −𝛽𝜓 r 𝑞𝐴−  

where𝐾𝑎
0 is the dimensionless thermodynamic equilibrium constant of the acid-base reaction of MAA 

units. This quantity is related to the standard chemical potentials of protons, and protonated and 

deprotonated MAA units, because 

𝐾𝑎
0 = exp 𝛽𝜇𝐴𝐻

0 − 𝛽𝜇𝐻+
0 − 𝛽𝜇𝐴−

0   

The local degree of binding of paired MAA segments is 

𝑓𝐵 r 

1 − 𝑓𝐵 r 
= 𝑒−𝛽𝛥𝐺

0
 1 − 𝑓𝑑  r   

where𝛥𝐺0 is the standard Gibbs free energy of the binding reaction. This equation clearly shows the 

strong coupling that exists between binding and acid-base equilibriums. The standard free energy of 

binding relates to the standard chemical potentials of free and bound speciesvia 

𝛥𝐺0 = 𝜇𝐵
0 − 𝜇𝐴𝐻

0 − 𝜇𝐹
0  

Finally, variation of 𝛷 with respect to the electrostatic potential yields the Poisson equation: 

𝜖𝛻2𝜓 r = − 𝜌𝑞 r   

This last equation together with the explicit expressions for charge density and degree of binding shows 

that the electrostatic interactions are strongly coupled to the chemical state of the different segments. At 

this point, all of the functions that compose the thermodynamic potential can be expressed in terms of 

input quantities and the local interaction potentials, 𝜋 r  and 𝜓 r . These interaction potentials can be 



obtained through replacing the explicit expressions for the different functions, and numerically solving 

the incompressibility constraint and the Poisson equation at each point of space.  

Once 𝜋 r  and 𝜓 r  are known any thermodynamic quantity of interest can be derived from the 

thermodynamic potential, which is now determined. In addition, structural properties can be calculated 

using the conformations of the network and their distribution of probability. For example, the fraction 

of MAA segments that are bound is given by 

 𝑥𝑏𝑛𝑑  =
 𝑑r 𝜌𝑀𝐴𝐴

𝐵  r  
𝑉

 𝑑r 𝜌𝑀𝐴𝐴  r  𝑉

 

while the fraction of dissociated MAA units can be determined from 

 𝑥𝑑𝑖𝑠  =
 𝑑r 𝜌𝑀𝐴𝐴

𝐴−  r  
𝑉

 𝑑r 𝜌𝑀𝐴𝐴  r  𝑉

 

The theory has been presented in a general fashion. To obtain results using this method, we 

need to provide the molecular information of all species in the system. In particular, the molecular 

details of the P(NIPAm-co-MAA) network are incorporated via the conformation-dependent local 

densities 𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r , 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r  and 𝜌𝑀𝐴𝐴
𝑝  𝛼𝑁 ,r , which must be given  ∀ 𝛼𝑁 ,r . To obtain the 

conformations of the network, we perform Molecular Dynamics (MD) simulations. 

In our calculations, we consider a network in a cubic box with full periodic boundary 

conditions. The periodicity of the electrostatic potential at the walls of the calculation box ensures 

electroneutrality of the system.The independent variables of a single calculation are the pH and salt 

concentration of the bath solution. In addition, the strength of the MAA-NIPAm binding interaction 

must be provided. In the qualitative model we are using, the main effect of an increasing temperature is 

reducing the effective strength of this interaction. Thus, we incorporate the effect of temperature into 

the value of 𝛽𝛥𝐺0. 

Molecular model. Calculation of results using the molecular theory requires defining a molecular 

model of the P(NIPAm-co-MAA)microgel network. The particular architecture that we have 

considered in this work is illustrated in Figure S4. This regular polymer network is composed of 25-



segment long polymer chains connected at six-coordinated nodal units (crosslinks). We have performed 

all calculations in a cubic box of volume 𝐿3having 𝑁𝑥 = 8 crosslinks and a total of 𝑁𝑠𝑒𝑔 = 608 

segments; full periodic boundary conditions are imposed in each calculation. Segments are randomly 

labeled as either MAA orNIPAm(except crosslinks), the only constraint is the MAA:NIPAm ratio to be 

0.35:0.65, as in the experimental system. Thus, the calculation box contains 𝑁𝑁𝐼𝑃𝐴𝑚 = 378and 

𝑁𝑀𝐴𝐴 = 222segments. The segment length is 𝑙𝑠𝑒𝑔 = 0.5 𝑛𝑚 for all types of units. Then, the molecular 

volume of a segment is 𝑣𝑁𝐼𝑃𝐴𝑚 = 𝑣𝑀𝐴𝐴 = 𝑣𝑠𝑒𝑔 =
𝜋

6
𝑙𝑠𝑒𝑔

3 = 0.0655 𝑛𝑚3, and the polymer volume 

fraction is 𝜙𝑝 =
 𝑁𝑥+𝑁𝑁𝐼𝑃𝐴𝑚 +𝑁𝑀𝐴𝐴  𝑣𝑠𝑒𝑔

𝐿3 =
𝑁𝑠𝑒𝑔 𝑣𝑠𝑒𝑔

𝐿3 . 

 

Figure S4.The scheme illustrates the molecular model of polymer network used to describe P(NIPAm-

co-MAA) microgels. Random NIPAm-co-MAA copolymer chains are interconnected at crosslinking 

segments. The two panels show different polymer volume fractions, 𝜙𝑝 . Orange tubes enclose the 

calculation box; full-3D periodic boundary conditions are applied in the calculations. This same graph 

has been included in the article, and it is reproduced here in the interest of making this section self-

contained. 

A molecular conformation of the network is defined by the spatial position of all its segments. 

We obtain the different molecular conformations of the network performing Molecular Dynamics 



simulations, which are described in detail in Longo et al.
1,2

Two different box sizes have been 

considered, such that the polymer volume fractions are 𝜙𝑝 = 0.002 and 𝜙𝑝 = 0.01 (see Fig. S3). We 

have arbitrarily chosen these volume fractions to represent the relatively compressed and swollen states 

of microgels observed inour DLS experiments at 24 and 28 ℃, respectively, for 5mM salt solutions. 

The ratio between these volume fractions is equivalent to that observed in the experiments. Each 𝜙𝑝  

considered requires an independent set of MD simulations. 

The molecular conformations of the network enter the theoretical calculations via the three 

conformation-dependent local densities: 𝜌𝑁𝐼𝑃𝐴𝑚  𝛼𝑁 ,r , 𝜌𝑀𝐴𝐴  𝛼𝑁 ,r  and 𝜌𝑀𝐴𝐴
𝑝  𝛼𝑁 ,r ∀ 𝛼𝑁 ,r , for 

NIPAm, MAA, and paired MAA units, respectively. To obtain these quantities, we discretize the 

volume of the box and count the number of different units in each discrete cell for every conformation. 

In the density of paired MAA, we only consider those segments that have a NIPAm unit within a 

distance equal to 𝑙𝑝𝑎𝑖𝑟 = 1.5 𝑙𝑠𝑒𝑔 . Details of the methodology used to numerically solve the equations 

of the theory can be found in Longo et al
5,6

. 

The electric charge of a dissociated MAA segment is 𝑞𝐴− = −𝑒, where 𝑒 is the absolute value 

of the electron charge. The acid-base equilibrium of MAA units is described using 𝑝𝐾𝑎 = 4.65; to 

describe water self-dissociation we use 𝑝𝐾𝑤 = 14. The permittivity of the aqueous medium is constant 

and equal to 𝜖 = 𝜖𝑤𝜖0, where 𝜖𝑤 = 78.5 is the relative permittivity of water at room temperature and 

𝜖0 denotes the vacuum permittivity. Monovalent salt ions are modeled using 𝑣+ = 𝑣− = 0.0335 𝑛𝑚3 

and 𝑞+ = −𝑞− = 𝑒. For the rest of the free species in the solution, we use 𝑣𝐻+ = 𝑣𝑂𝐻− = 𝑣𝑤 =

0.03 𝑛𝑚3 and 𝑞𝐻+ = −𝑞𝑂𝐻− = 𝑒. 
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