Fluorous 'Ponytails' Lead to Strong Gelators Showing Thermally Induced Structure Evolution

Supplementary Information

Harshita Kumari,^{*a**} Sarah E. Armitage,^{*b*} Steven R. Kline,^{*c*} Krishna K. Damodaran,^{*d*} Stuart R. Kennedy,^{*b*} Jerry L. Atwood,^{*e**} and Jonathan W. Steed ^{*b**}

Syntheses

All starting materials and solvents were purchased from Sigma or VWR with no further purification or drying required, except the 4-(hexyloxy)aniline (section 6.1). The machines used to characterise the compounds are: NMR spectroscopy: Varian Inova 500 MHz; mass spectrometry: Xevo QToF mass spectrometer, Water UK Ltd.; infrared spectroscopy: Perkin Elmer Spectrum 100 FT-IR spectrometer; elemental analysis: Carlo Erba Flash 2000 Elemental analyser configured for CHN detection.

Purification of 4-(hexyloxy)aniline

The 4-(hexyloxy)aniline was purified by the following procedure: once dissolved in the minimum volume of chloroform, the aniline was passed through a column containing activated aluminium oxide which had been left in an oven at 100 $^{\circ}$ C for 24 h prior to use. Further chloroform was added to the column until the eluent emerged as a clear colourless solution. Solid blue impurities were retained by the column. The eluent was a deep red/brown colour and upon removal of solvent using rotary evaporator equipment followed by 24 h in a vacuum desiccator with phosphorus pentoxide, a terracotta colour crystalline solid was obtained at yields of 90 %. The purified 4-(hexyloxy)aniline solid was used in the synthesis of compounds **1b** and **1a**.

Compound 1a

An excess of purified 4-(hexyloxy) aniline (3.00 g, 15.52 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for one hour. 1,4-diisocyanatobutane (0.72 g, 5.13 mmol) was added and the reaction mixture allowed to reflux for 24 hours with constant agitation and under constant nitrogen flow. The resulting mixture was filtered under reduced pressure, the solid product washed with 3 x 100 ml cold DCM and isolated as a white powder (2.49 g, 4.73 mmol, 92 % yield). Compound **1a** was dried in a heat pistol for 3 hours.

¹H NMR (DMSO-d₆, J/Hz, δ/ppm): 0.90 (H1, t, 6H,J=7.0); 1.25-1.55 (H2-4, H12, m, 16H); 1.69 (H5, quintet, 4H, J=7.0); 3.12 (H11, quartet, 4H, J=5.5); 3.91 (H6, t, 4H, J=6.5); 5.89 (H10, t, 2H, J=5.0); 6.79 (H7, d, 4H, J=8.5); 7.26 (H8, d, 4H, J=9.0); 7.95 (H9, s, 2H).¹³C {¹H} NMR (DMSO-d₆, δ/ppm): 14.36 (A); 22.61 (B); 25.84 (D); 28.15 (M); 29.51 (E); 31.65 (C); 39.77 (L); 68.79 (F); 115.57 (H); 120.47 (I); 134.50 (J); 154.33 (K); 156.31 (G). IR (ν /cm⁻¹): 3332 (NH stretch); 3298 (NH stretch); 2940 (CH₂ stretch); 2866 (CH₂ stretch); 1632 (CO stretch). Anal. Calc'd for C₃₀H₄₆N₄O₄: C, 68.41; H, 8.80; N, 10.64. Found: C, 68.35; H, 8.90; N, 10.55. Theoretical m/z: 526.35 g mol⁻¹. Found m/z (ASAP-MS): 526.36 g mol⁻¹.

Compound 1b

An excess of purified 4-(hexyloxy) aniline (3.00 g, 15.52 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for one hour. Hexamethylene diisocyanate (1.17 g, 7.00 mmol) was added and the reaction mixture refluxed for 24 hours with constant agitation and under constant nitrogen flow. The resulting mixture was filtered under reduced pressure and the solid product washed with 3 x 100 ml cold DCM and isolated as a white powder (3.09 g, 5.56 mmol, 79 % yield). Compound **1b** was dried in a heating pistol at 110°C for 3 hours.

¹H NMR (DMSO-d₆, J/Hz, δ/ppm):0.89 (H1, t, 6H,J=5.0); 1.25-1.51 (H2-4, H12-13, m, 20H); 1.68 (H5, quintet, 4H, J=7.0); 3.11 (H11, quartet, 4H, J=5.0); 3.90 (H6, t, 4H, J=4.5); 5.86 (H10, t, 2H, J=5.0); 6.78 (H7, d, 4H, J=8.5); 7.25 (H8, d, 4H, J=8.5); 7.94 (H9, s, 2H). ¹³C {¹H} NMR (DMSO-d₆, δ/ppm): 14.35 (A); 22.60 (B); 25.83 (D); 26.81 (N); 29.49 (E); 30.48 (M); 31.63 (C); 39.91 (L); 68.78 (F); 115.56 (H); 120.49 (I); 134.46 (J); 154.32 (K); 156.31 (G). IR (ν /cm⁻¹): 3337 (NH stretch); 3297 (NH stretch); 2932 (CH₂ stretch); 2856 (CH₂ stretch); 1627 (CO stretch). Anal. Calc'd for C₃₆H₅₈N₄O₄: C, 69.28; H, 9.08; N, 10.10. Found: C, 69.19; H, 9.09; N, 10.23.Theoretical m/z: 554.38 g mol⁻¹. Found m/z (ASAP-MS): 554.39 g mol⁻¹.

Compound 1c

An excess of 4-(octyloxy) aniline (3.00 g, 13.55 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for one hour. 1,4-diisocyanatobutane (0.86 g, 6.14 mmol) was added and the reaction mixture allowed to reflux for 24 hours with constant agitation and under constant nitrogen flow. The resulting mixture was filtered under reduced pressure and the solid productwashed with 3 x 100 ml cold DCM and isolated as a white powder (2.93 g, 5.03 mmol, 82 % yield). Compound **1c** was dried in a heat pistol for 3 hours.

¹H NMR (DMSO-d₆, J/Hz, δ /ppm): 0.89 (H1, t, 6H,J=6); 1.23-1.52 (H2-6, H14, m, 24H); 1.69 (H7, quintet, 4H, J=7.0); 3.11 (H13, m, 4H); 3.91 (H8, t, 4H, J=6.5); 5.89 (H12, m, 2H); 6.79 (H9, d, 4H, J=9.0); 7.26 (H10, d, 4H, J=8.5); 7.95 (H11, s, 2H). ¹³C{¹H} NMR (DMSO-d₆, δ /ppm): 14.42 (A); 22.63 (B); 26.20 (F); 28.15 (O); 29.22 (E); 29.36 (D); 29.54 (G); 31.84 (C); 39.77 (N); 68.78 (H); 115.57 (J); 120.46 (K); 134.51 (L); 154.32 (M); 156.30 (I). IR (ν /cm⁻¹): 3333(NH stretch); 3300 (NH stretch); 2923 (CH₂ stretch); 2854 (CH₂ stretch); 1632 (CO stretch). Anal. Calc'd for C₃₄H₅₄N₄O₄: C, 70.07; H, 9.34; N, 9.61. Found: C, 69.91; H, 9.27; N, 9.62. Theoretical m/z: 582.41 g mol⁻¹. Found m/z (ASAP-MS): 582.41 g mol⁻¹.

Compound 1d

An excess of 4-(octyloxy) aniline (3.00 g, 13.55 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for one hour. Hexamethylene diisocyanate (1.04 g, 6.18 mmol) was added and the reaction mixture left to reflux for 24 hours with constant agitation and under constant nitrogen flow. The resulting mixture was filtered under reduced pressure and the solid product washed with 3 x 100 ml cold DCM and isolated as a white powder (3.02 g, 4.95 mmol, 80 % yield). Compound **1d** was dried in a heat pistol for 3 hours before weighing.

¹H NMR (DMSO-d₆, J/Hz, δ /ppm): 0.89 (H1, t, 6H, J=6.5); 1.24-1.51 (H2-6, H12, m, 28H); 1.69 (H7, quintet, 4H, J=6.5); 3.10 (H13, quartet, 4H, J=6.0); 3.91 (H8, t, 4H, J=6.5); 5.85 (H12, t, 2H, J=5.5); 6.79 (H9, d, 4H, J=8.5); 7.25 (H10, d, 4H, J=9.0) 7.94 (H11, s, 2H). ¹³C {¹H} NMR (DMSO-d₆, δ /ppm): 14.48 (A); 22.63 (B); 26.20 (F); 26.84 (P); 29.22 (E); 29.36 (D); 29.54 (G); 30.51 (O); 31.84 (C); 39.91 (N); 68.79 (H); 115.34 (J); 120.41 (K); 134.52 (L); 154.31 (M); 156.29 (I).IR (*v*/cm⁻¹): 3336 (NH stretch); 3298(NH stretch); 2925 (CH₂ stretch); 2857 (CH₂ stretch); 1632 (CO stretch). Anal. Calc'd for C₃₆H₅₈N₄O₄: C, 70.78; H, 9.57; N, 9.17. Found: C, 70.76; H, 9.52; N, 9.28. Theoretical m/z: 610.45 g mol⁻¹.

An excess of 4-(heptadecafluorooctyl) aniline (3.3 g, 6.46 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for an hour. 1,4-diisocyanatobutane (0.41 g, 2.93 mmol) was added and

the reaction mixture allowed to reflux for 24 hours with constant agitation and under constant nitrogen flow. Compound 2a is soluble in THF so the solvent was removed under reduced pressure to yield a solid white powder. The product was washed with 3 x 100 ml cold DCM, filtered under reduced pressure and isolated as a white powder (3.05 g, 2.63 mmol, 90 % yield). Compound 2a was dried on a heating piston for 3 hours before weighing.

¹H NMR (DMSO-d₆, J/Hz, δ/ppm): 1.52 (H6, quintet, 4H, J=5.0); 3.16 (H5, quartet, 4H, J=5.0); 6.21 (H4, t, 2H, J=5.0); 7.47 (H1, d, 4H, J=9.0); 7.61 (H2, d, 4H, J=8.5); 8.68 (H3, s, 2H).¹³C{¹H} NMR (DMSO-d₆, δ/ppm): 27.88 (O); 39.72 (N); 118.15 (A); 119.79 (K); 127.87 (J); 145.33 (L); 155.59 (M). NOTE: carbon signals B-I are suppressed by the highly electronegative fluorine atoms. ¹⁹F NMR (DMSO-d₆, δ/ppm): -80.51 (Fα, m, 6H); -108.39 (Fθ, m, 4H); -120.81 (Fη, m, 4H); -120.46 (Fγ, Fδ, Fε,m, 12H); -122.28 (Fζ, m, 4H); -125.55 (Fβ, m, 4H). IR (ν /cm⁻¹): 3332 (NH stretch); 2943 (CH₂ stretch); 2869 (CH₂ stretch); 1653 (CO stretch). Anal. Calc'd for C₃₄H₂₀N₄O₂F₃₄: C, 35.13; H, 1.73; N, 4.82. Found: C, 35.03; H, 1.67; N, 4.92. Theoretical m/z: 1162.10 g mol⁻¹. Found m/z (ASAP-MS): 1162.11 g mol⁻¹.

An excess of 4-(heptadecafluorooctyl) aniline (3.00 g, 5.87 mmol) was dissolved in anhydrous THF (300 ml) and purged under nitrogen for one hour. Hexamethylene diisocyanate (0.45 g, 2.68 mmol) was added and the reaction mixture left to reflux for 24 hours with constant agitation and under constant nitrogen flow. Compound **2b** is soluble in THF so the solvent was removed under reduced pressure to yield a solid white powder. The product was washed with 3 x 100 ml cold DCM, filtered under reduced pressure and isolated as a white powder (2.87 g, 2.41 mmol, 90 % yield). Compound **2b** was dried in a heating pistol for 3 hours.

¹H NMR (DMSO-d₆, J/Hz, δ/ppm): 1.15-1.54 (H6-7, m, 8H); 3.13 (H5, quartet, 4H, J=6.5); 6.17 (H4, t, 2H, J=5.0); 7.47 (H1, d, 4H, J=9.0); 7.61 (H2, d, 4H, J=8.5); 8.67 (H3, s, 2H). ¹³C{¹H} NMR (DMSO-d₆, δ/ppm): 26.70 (P); 30.24 (O); 39.85 (N); 118.22 (K); 127.89 (J); 145.36 (L); 155.56 (M). NOTE: carbon signals A-I are suppressed by the highly electronegative fluorine atoms. ¹⁹F NMR (DMSO-d₆, δ/ppm): -80.49 (Fα, m, 6H); -108.37 (Fθ, m, 4H); -120.80 (Fη, m, 4H); -121.44 (Fγ, Fδ, Fε, m, 12H); -122.26 (Fζ, m, 4H); -125.53 (Fβ, m, 4H). IR (ν /cm⁻¹): 3327 (NH stretch); 2935 (NH stretch); 2862 (CH₂ stretch); 1652 (CO stretch). Anal. Calc'd for C₃₆H₂₄N₄O₂F₃₄: C, 36.32; H, 2.03; N, 4.71. Found: C, 36.22; H, 1.92; N, 4.66. Theoretical m/z: 1190.14 g mol⁻¹. Found m/z (ASAP-MS): 1190.13 g mol⁻¹.

Analysis

Gel Screening Studies

Gel studies were conducted at gelator concentrations between 1.0 and 10.0 % weight for each gelator compound using 1 ml of solvent. The 1.0 % weight gels were made by addition of 10 mg of the gelator

compound to an S7 vial (18 mm diameter, 7 cm³) containing 1 ml of solvent. The vials were sealed, sonicated for 30 seconds, heated to form a homogeneous sol, then left to cool for 24 h before observations were recorded. The solubility of each gelator compound upon heating was noted in addition to any precipitates or crystals that may have formed upon cooling (supplementary information).

X-ray Powder Diffraction

X-ray powder diffraction data were collected on a Bruker AXS D8 Advance diffractometer using Cu K α radiation with a wavelength of 1.54 Å at 2θ values between 2 - 60 °. The machine was run at a voltage of 40 kV and current of 40 mA. The xerogels were prepared in the following manner: 200 mg of each compound was dissolved by sonication then heating in a volume of solvent which corresponds to the DMSO MGC of that specific gelator. The solutions were left to cool and the gels formed over several days. The gels were filtered under pressure for 2 hours and left to air dry for 3-4 days before data collection.

Figure S1: Comparison of bulk solid XRPD patterns: a) Hydrocarbon compounds. From top to bottom: compound 1a, 1c, 1b, 1d; b) Fluorocarbon compounds. From top to bottom: compound 2a, 2b.

Figure S2: Comparison of DMSO xerogel and bulk solid XRPD patterns. a) compound 1d. Top: xerogel; bottom: bulk b) compound 2b. Top: xerogel; bottom: bulk; c) compound 2a. Top: simulated from crystal structure; middle: xerogel; bottom: bulk solid.

Rheology

Rheology experiments were performed using a TA Instrument AR Rheometer 2000 with parallel plate geometry with a gap of 2500 µm. Both upper and lower plates were rough to avoid gel slippage during data collection. All experiments were conducted at 20 °C. The 2 ml gel samples were loaded onto the lower plate in the following manner: the required mass of solid gelator was dissolved in 2 ml of DMSO by sonication then heating to form a sol. The sol was transferred to a vaseline-coated glass cylinder on the lower rough steel plate and the gel left to set for 25 minutes. Once the gel had set, the sample was compressed to a gap of 3000 µm, the glass cylinder removed and the gap narrowed to 2500 µm before data acquisition.

Two types of experiments were performed: stress-sweep and frequency sweep. The stress-sweep experiments were conducted at constant strain and at oscillatory stresses between 0.1 - 1000 Pa. The frequency experiments were conducted at a constant oscillatory stress of 1 Pa (as determined by initial stress-sweeps) and oscillatory frequencies between 0.1 and 100 Hz.

gels of

Figure S3: Stress sweep data for a 7.0 % weight gel of compound 1b in DMSO. Red circles: storage modulus (G').

Blue circles: Loss modulus (G"). Yield point: 81.0 Pa.

Figure S4: Stress-sweep plots for DMSO gels at different concentrations: Open squares: compound 1d (3.0 % wt); open circles: 2b (1.0 % wt); open diamonds: 1b (7.0 % wt); closed squares: 1c (2.5 % wt); closed diamonds: 1a (3.0 % wt); closed circles: 33 (1.0 % wt). Only G' is shown to simplify the plot. Vertical red line: oscillatory stress chosen for frequency-sweep experiments (1 Pa).

Figure S5: Frequency-swe blue circles: *G*^{''} of 3.0 % v

Figure S6: Frequency-sweep for the 7.0 % wt DMSO gels of compounds of types 1 and 2. Note only *G*' is shown to simplify the plot. Closed blue diamonds: compound 1b; open blue circles: 1d; closed red circles: 2b; closed red squares: 1a; open red squares: 1c; open blue diamonds: 2a.

Figure S7: Frequency-sweep for DMSO gels of compound 2a. Note only *G*' is shown to simplify the plot. Open red squares: 0.2 % wt; closed blue circles: 1.0 % wt; closed black diamonds: 3.0 % wt; closed red squares: 5.0 % wt; open blue circles: 7.0 % wt.

Scanning Electron Microscopy

An FEI Helios nanolab mk2 scanning electron microscopy machine was used to image the DMSO and ethanol xerogels of compounds of types **1** and **2**. The xerogels were prepared in the following manner: gels of each compound in the respective solvents were prepared by dissolving the required mass of gelator in 1 ml of solvent by sonication then heating. The solutions were left to cool to room temperature then the gels were left to fully form over 24 hours. Small amounts of each sample were transferred to thin silica plates. The gels were left to dry in a fume hood for a week. The xerogel samples were then coated with 3-5 nm of chromium and the SEM images collected.

T_{gel} Experiments

Different concentrations of DMSO gels of the target compounds were prepared by sonicating then heating the corresponding mass of gelator in 2ml of solvent. The gels were left to fully form over a 3-4 hour period. Each experiment was conducted using the following procedure: a metal ball bearing was lightly placed on top of the gel; the gel was then placed in an oil bath at room temperature (25 °C) and heated to about 35 °C. The heating rate was kept as constant as possible and the temperature increased by 1 °C every 3 minutes. Temperature was monitored using a mercury thermometer with gradations of 2 °C, (error \pm 2°C). The temperature at which the ball bearing touched the vial bottom was recorded as the T_{gel} .

Compound	Concentration / % wt	T _{gel} ∕ °C
1d	3	73
	7	82
1b	7	66
	9	74
1c	2.5	74
	7	93
1a	3	64
	7	78
2b	0.5	40
	1	52
	3	59
	5	59
	7	61
2a	0.2	50
	0.5	67
	1	77
	3	80
	5	82
	7	07

Small Angle X-ray Scattering

Small angle X-ray scattering experiments were conducted using a Bruker Nanostar SAXS machine with cross-coupled Gobel mirrors and pin-hole collimation for point focus geometry, using a sealed tube X-ray source operated at 40 KV and 35 mA to produce Cu Ka radiation of wavelength 1.54 Å. The optics and sample chamber were under vacuum to minimise air scatter. The data were collected over 30 minutes in which 130,000 - 230,000 counts were collected. The sample distance from the detector was kept constant at 107 mm. 10.0 % weight DMSO gels of compounds 2b and 2a were prepared by dissolving 100 mg of each compound in 1 ml DMSO by sonication then heating. The hot solutions were pipetted onto tin foil, left to form the gel over 20 minutes and, then placed in the sample holder for data acquisition. The gels were dried over three days and xerogel data collected in the same manner.

Wide Angle X-ray Scattering

Wide angle X-ray scattering experiments were conducted using a Bruker GADDS D8 WAXS machine with cross-coupled Gobel mirrors and pin-hole collimation for point focus geometry, using a sealed tube X-ray source operated at 30 kV and 10 mA to produce Cu Kα radiation of wavelength 1.54 Å. The data were collected over 30 minutes in which 160,000 - 250,000 counts were collected. The detector-sample distance was kept constant at 15.3 mm. 10 % weight DMSO gels of compounds 2b and 2a were prepared by dissolving 100 mg of each compound in 1 ml DMSO by sonication then heating. The hot solutions were pipette onto thick silica plates and left to cool for 20 minutes to form the gel. The xerogels were formed by drying the same gel samples for three days and the data collected in the same manner.

Synchrotron Crystal Structure Data

The single crystal structure of compound 2a crystallised obtained from 2-butanone solvent were collected at 150 K on a Rigaku Saturn 724+ diffractometer at station I19 of the Diamond Light Source synchrotron (undulator, lambda = 0.6889 Å, omega-scan, 1.0° /frame) and processed using Bruker APEXII software. The structure was solved by direct method and refined by full-matrix least squares on F2 for all data using SHELX (G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.) and OLEX2 (O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.) software. The crystal dimensions were 0.35 mm x 0.05 mm x 0.03 mm.

Crystal data: $C_{106}H_{68}N_{12}O_7F_{102}$; MW = 3559.58 g mol⁻¹; T = 120 K; $\lambda = 0.68890$ Å; triclinic space group P-1; a = 13.287(3)Å; b =14.229(3) Å; c = 18.870(4) Å; $\alpha = 70.476(2)$ °; $\beta = 72.879(2)$ °; γ = 85.688(2) °; V = 3212.4(12) Å³; Z = 3; R1 = 0.0543; $wR_2 =$ 0.1567; S = 1.089. Anal. calc. for $C_{106}H_{68}N_{12}O_7F_{102}$: C, 35.77; H, 1.93; N, 4.72. Found: C, 35.85; H, 1.86; N, 4.83.

Thermogravimetric analysis

Compound 2a crystals obtained from 2-butanone were analysed

by thermogravimetric analysis using a Perkin Elmer Pyris 1 Thermogravimetric analyser with mass spectrometer analysis and helium carrier gas. The crystals were prepared by removal from the mother solution and dried on filter paper to remove excess solvent.

SANS Data and fits

SANS data for fluorinated and non-fluorinated bis-urea gelators were fitted to fractal and fractal flexible models. The SANS data fitting are divided into low q and high q region. The low q region is fitted to compare the correlation lengths at different at both non-fixed/held and fixed/held block radius of 5 and 10 Å. The high q data is overlapped in a given solvent to compare the differences at local dimensions. Fittings include full q length, low q length as well as global fittings of 2wt% and 5wt% data sets.

G4: BIS UREA IN DMF at 2 wt % concentration

Figure 1. Bis-urea gelator in DMF at 2 wt% concentration at 25 degree C fitted to a Smeared fractal model (both low and high q data)

Volume Fraction (scale)	0.00345869	±	7.98538e-06
Block Radius (Å)	$7.3183 \ \pm$	0.0647	025
fractal dimension	3.02342±	0.0008	04501
correlation length (Å)	$230.947 \pm$	0.7698	26
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm $^{-1}$ sr $^{-1}$)	-0.000602962	±	7.73862e-05
chisq = 6674.65 Npnts = 255 Sqrt(χ^2 Fitted range = [0,254] = 0.00116	/N) = 5.11616 < Q < 0.522		

NOTE: Bis-urea gealtor in DMF at 2wt% concentration and at 25 degree C is fitted to a fractal model. The block radius is representative of the thickness of the fibres and Fit to SmearedFractal,

Data file: G4 25C absb

Figure 2. Bis-urea gelator in DMF at 2 wt% concentration at 25 degree C fitted to a Smeared fractal model (only low q data)

6

Volume Fraction (scale	0.00347248	±	9.99031e-0
Block Radius (Å)	8.13037±	0.680	586
fractal dimension	3.02298±	0.000	914016
correlation length (Å)	231.209±	0.833	263
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00345368	3 ±	0.0022653
chisq = 6381.68			
Npnts = 172	$Sqrt(\chi^2/N) = 6.09121$	l	
Fitted range = $[0,171]$ =	= 0.00116 < Q < 0.1348		
FitError = No Error	FitQuitReason	= No Err	or

Figure 3. Bis-urea gelator in DMF at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal model (both low and high q data)

Volume Fraction (scale)	0.00335296	±	1.54842e-05
Block Radius (Å)	6.75612±	0.115	5944
fractal dimension	$2.98904 \pm$	0.001	112657
correlation length (Å)	372.089±	2.523	306
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00102317	±	0.000122786
chisq = 2955.52			

S14

 $Sqrt(\chi ^{2}/N) = 3.40445$ Npnts = 255Fitted range = [0,254] = 0.00116 < Q < 0.522FitError = No Error FitQuitReason = No Error

Fit to SmearedFractal,

Smeared fractal model (low q data)

Volume Fraction (scale)	0.00338345	±	2.44264e-05
Block Radius (Å)	$6.38885 \pm$	3.0449	95
fractal dimension	2.98551±	0.0012	24268
correlation length (Å)	376.773±	2.646	2
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å ⁻²)	6.33e-06	±	0

chisq = 2653.79 Npnts = 170 Sqrt(χ^2/N) = 3.95102 Fitted range = [0,169] = 0.00116 < Q < 0.1244 FitError = No Error FitQuitReason = No Error

Figure 5 Bis-urea gelator in DMF at 2 wt% concentration at 25 C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000223668	±	2.88287e-06
fractal dimension	$2.96578 \pm$	0.0019	96161
correlation length (Å)	248.356±	1.2351	19

SLD block (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	$39.6765 \pm$	0.13786	52
Kuhn Length, b (Å)	24.5881±	0.09907	766
Cylinder Radius (Å)	$35.6998 \pm$	0.27582	28
bkgd (cm ⁻¹ sr ⁻¹)	0.00886752	±	0.000163685
chisq = 5918.03 Npnts = 179 Sqrt(χ^2 / Fitted range = [0,178] = 0.00116 < FitError = No Error F	N) = 5.74992 Q < 0.1712 itQuitReason = 1	No Error	

Fit to SmearedFractalFlexCyl, Data file: G4_25C_absb

(low and high q data)

Volume Fraction (scale)	0.000324338	±	5.33606e-06	
fractal dimension	$3.00492 \pm$	0.00134368		
correlation length (Å)	233.544±	0.9245	91	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	6.33e-06	±	0	
Contour Length (Å)	37.6413±	0.0448	999	
Kuhn Length, b (Å)	21.2433±	0.0374	721	
Cylinder Radius (Å)	25.2056±	0.2311	06	
bkgd (cm ⁻¹ sr ⁻¹)	0.00263909	±	6.62204e-05	
chisq = 7615.82Npnts = 255Sqrt(χ^2/N) = 5.46498Fitted range = [0,254] = 0.00116 < Q < 0.522				

Figure 7 Bis-urea gelator in DMF at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000216002	±	5.67851e-06
fractal dimension	$2.95629 \pm$	0.002	00001
correlation length (Å)	405.043±	3.813	85
SLD block (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	30.5311±	0.025	7219
Kuhn Length, b (Å)	21.0536±	0.018	8174
Cylinder Radius (Å)	28.7189±	0.423	931
bkgd (cm ⁻¹ sr ⁻¹)	0.0022241	±	9.80641e-05
chisq = 3210.79 Npnts = 255	$Sqrt(\chi^{2}/N) = 3.54843$		

Fitted range = [0,254] = 0.00116 < Q < 0.522

FitError = No Error FitQuitReason = No decrease in chi-squared

Fit to SmearedFractalFlexCyl, Data file: G4_cool_absb

Smeared fractal flexible model (both low and high q data)

Volume Fraction (scale)) 0.00015973	3 ±	4.6737e-06
fractal dimension	2.94658±	0.00	245268
correlation length (Å)	401.826±	3.79	531
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	$30.5202 \pm$	0.01	74386
Kuhn Length, b (Å)	$20.7846 \pm$	0.01	12459
Cylinder Radius (Å)	33.3175±	0.55	965
bkgd (cm ⁻¹ sr ⁻¹)	0.00690614	1 ±	0.000327497
chisq = 2284.89 Npnts = 173	$Sqrt(\chi^{2}/N) = 3.6342$	2	

Fitted range = [0,172] = 0.00116 < Q < 0.14FitError = No Error FitQuitReason = No Error

G1: BIS UREA IN DMSO LOW Q DATA FITTINGS: FRACTAL MODELS

Fit to SmearedFractal, Data file: G1_25C_absb

Block radius held at 5.

Volume Fraction (scale)	0.00154501	± 8.8003e-06
Block Radius (Å)	5 ±	0
fractal dimension	$2.8937 \ \pm$	0.00211684
correlation length (Å)	424.943±	3.85877

SLD block (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0122004	±	0.00038391
chisq = 1579.27			
Npnts = 160	$Sqrt(\chi^{2}/N) = 3.14173$		
Fitted range = $[0,159]$ =	0.00116 < Q < 0.07169		
FitError = No Error	FitQuitReason =	No E	rror

Fit to SmearedFractal, Data file: G1 25C absb

data). Block radius held at 10.

Volume Fraction (scale)	0.00144082	±	6.69827e-06
Block Radius (Å)	10	±	0
fractal dimension	2.89229	±	0.00212011
correlation length (Å)	425.884	±	3.87672

SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0155331	±	0.000387706
chisq = 1573.37			
Npnts = 160	$Sqrt(\chi^2/N) = 3.13585$		
Fitted range = $[0, 159] = 0$	0.00116 < Q < 0.07169		
FitError = No Error	FitQuitReason =	= No Ei	rror

Smeared fractal model (only low q data). Block radius held at 5.

Volume Fraction (scale) 0.000461345 4.08769e-06

±

Block Radius (Å)	5	±	0	
fractal dimension	3.0275	±	0.00240	579
correlation length (Å)	526.453	±	5.8449	
SLD block (Å-2)	2.41e-06	6	±	0
SLD solvent (Å-2)	5.278e-0	06	±	0
bkgd (cm ^{-1} sr ^{-1})	0.00213	251	±	0.000284563
chisq = 714.508 Npnts = 161 Sqrt(χ^{2} / Fitted range = [0,160] = 0.00116 < FitError = No Error F	N) = 2.10 $Q < 0.0$ itQuitRea	0664 7698 ason = N	No Error	

Fit to SmearedFractal, Data file: G1_80C_absb

Smeared fractal model (only low q data). Block radius held at 10.

Volume Fraction (scale)	0.00047092	±	3.70854e-06		
Block Radius (Å)	10 ±	0			
fractal dimension	3.02713±	0.00241	1053		
correlation length (Å)	526.556±	5.85086	5		
SLD block (Å-2)	2.41e-06	±	0		
SLD solvent (Å-2)	5.278e-06	±	0		
bkgd (cm ⁻¹ sr ⁻¹)	0.000846714	±	0.000285457		
chisq = 713.716 Npnts = 161 Sqrt(χ^2/N) = 2.10547 Fitted range = [0,160] = 0.00116 < Q < 0.07698					

q (Å⁻¹) Figure 13. Bis-urea gelator in DMSO at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal model (only low q data). Block radius held at 5.

Volume Fraction (scale)	0.0009	10757	±	1.06534e-05
Block Radius (Å)		5	±	0	
fractal dimension		3.0076	$4\pm$	0.0032	4221
correlation length (Å)		526.74	5±	7.8872	.9
SLD block (Å-2)		2.41e-0	06	±	0
SLD solvent (Å-2)		5.278e	-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)		0.0023	5492	±	0.000481011
chisq = 342.211 Nppts = 163	$Sart(y \land 2/N) = 1.44805$				

 $Sqrt(\chi ^{2/N}) = 1.44895$ Npnts = 163Fitted range = [0,162] = 0.00116 < Q < 0.08755FitError = No Error FitQuitReason = No Error

Smeared fractal model (only low q data). Block radius held at 10.

Volume Fraction (scale)	0.000916951	±	9.4821e-06	
Block Radius (Å)	10 ±	0		
fractal dimension	$3.0073 \ \pm$	0.003	25126	
correlation length (Å)	526.796±	7.895	513	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	-3.24721e-05	±	0.00048418	
chisq = 341.55				
Npnts $= 163$	$Sqrt(\chi^2/N) = 1.44755$			
Fitted range = $[0,162] = 0.00116 < Q < 0.08755$				
FitError = No Error	FitQuitReason =	No Err	or	

FULL DATA SET: FRACTAL FLEXIBLE CYLINDER MODEL Fit to SmearedFractalFlexCyl, Data file: G1_cool_absb

q (Å⁻¹) Figure 15 Bis-urea gelator in DMSO at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000114888	±	6.95797e-06
fractal dimension	3.01034±	0.0046	56439
correlation length (Å)	506.203±	9.2803	38
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	$64.075 \pm$	1.4299	96

Kuhn Length, b (Å)	$47.5284\pm$	1.14	886
Cylinder Radius (Å)	44.4198±	1.35	268
bkgd (cm ⁻¹ sr ⁻¹)	0.00155055	±	9.75898e-05
chisq = 511.695			
Npnts = 255	$Sqrt(\chi^2/N) = 1.41656$		
Fitted range = [0,254] =	= 0.00116 < Q < 0.522		
FitError = No Error	FitQuitReason =	= No Ei	rror

NOTE: For this data set, Kuhn length is shorter than the contour length. For the flexible cylinder fractal model, the Kuhn length is the length over which the long, flexible cylinder can be considered "rigid". This is shorter than the total length of the cylinder, and depends on the system. Some are more rigid, some more floppy. The contour length is the total length of the flexible cylinder, if one stretched it out straight and measured it.

For flexible models, if the Kuhn length is similar to the contour length, then its rigid over its entire length and could equally well be described as a plain old cylinder. This is not true for this system

Figure 16 Bis-urea gelator in DMSO at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000128695	±	2.19132e-05
fractal dimension	3.01237±	0.0060)4269

correlation length (Å)	$504.722\pm$	9.27308	3
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	59.7336±	0.70373	32
Kuhn Length, b (Å)	51.1636±	0.67580)7
Cylinder Radius (Å)	$43.4084 \pm$	3.90341	l
bkgd (cm ⁻¹ sr ⁻¹)	0.000701717	±	0.00177458
chisq = 306.241 Npnts = 160 Sqrt(χ ^2 Fitted range = $[0,159] = 0.00116 <$ FitError = No Error F	/N) = 1.38348 < Q < 0.07169 itQuitReason = 1	No decre	ase in chi-squared

Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	6.54049e-05	±	3.35091e-06		
fractal dimension	$3.03262\pm$	0.003	329423		
correlation length (A)	506.418±	6.906	524		
SLD block (A-2)	2.41e-06	±	0		
SLD solvent (A-2)	5.278e-06	±	0		
Contour Length (A)	63.1647±	0.266676			
Kuhn Length, b (A)	$48.547 \ \pm$	0.159	0.159747		
Cylinder Radius (A)	43.0193±	1.181	137		
bkgd (cm^-1 sr^-1)	0.000242761	±	5.32351e-05		
chisq = 856.34 Npnts = 255 Sqrt() Fitted range = [0,254] = 0.001	$(^{2}/N) = 1.83254$ 16 < Q < 0.522				
FitError = No Error	FitQuitReason =	No de	crease in chi-squared		

NOTE: For this data set, Kuhn length is shorter than the contour length. For the flexible cylinder fractal model, the Kuhn length is the length over which the long, flexible cylinder can be considered "rigid". This is shorter than the total length of the cylinder, and depends on the system. Some are more rigid, some more floppy. The contour length is the total length of the flexible cylinder, if one stretched it out straight and measured it.

For flexible models, if the Kuhn length is similar to the contour length, then its rigid over its entire length and could equally well be described as a plain old cylinder. This is not true for this system

Fit to SmearedFractalFlexCyl, Data file: G1_80C_absb

Figure 18 Bis-urea gelator in DMSO at 2 wt% concentration at 80 degree C /(checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	6.00115e-05	±	4.85895e-06
fractal dimension	3.03286±	0.003	363251
correlation length (Å)	505.25 ±	6.73	951
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	67.6354±	2.52	133
Kuhn Length, b (Å)	48.3672±	1.043	382
Cylinder Radius (Å)	45.6986±	1.870	691
bkgd (cm ⁻¹ sr ⁻¹)	0.000623124	±	0.000336511
chisq = 638.023 Npnts = 163 Sqrtt	$(\chi^2/N) = 1.97845$		
Fitted range = $[0,162] = 0.001$ FitError = No Error	$116 \le Q \le 0.08755$ FitOuitReason =	No Fr	ror
	1 in Xun in Cuison	110 11	101

NOTE: For this data set, Kuhn length is shorter than the contour length. For the flexible cylinder fractal model, the Kuhn length is the length over which the long, flexible cylinder can be considered "rigid". This is shorter than the total length of the cylinder, and depends on the system. Some are more rigid, some more floppy. The contour length is the total length of the flexible cylinder, if one stretched it out straight and measured it.

For flexible models, if the Kuhn length is similar to the contour length, then its rigid over its entire length and could equally well be described as a plain old cylinder. This is not true for this system

Fit to SmearedFractalFlexCyl, Data file: G1 25C absb

Figure 19 Bis-urea gelator in DMSO at 2 wt% concentration at 25 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000124777	±	1.40452e-06
fractal dimension	2.76453±	0.00421029	
correlation length (Å)	575.059±	9.1415	i
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	56.1255±	0.1574	36
Kuhn Length, b (Å)	52.3816±	0.2137	/35
Cylinder Radius (Å)	58.7316±	0.4360	039
bkgd (cm ⁻¹ sr ⁻¹)	0.00106986	±	5.33172e-05
chisq = 1224.1 Npnts = 255 Sqrt(χ^{2}	2/N = 2.19098		
Error = No Error FitQuitReason = No Error			

Fit to SmearedFractalFlexCyl,

Figure 20 Bis-urea gelator in DMSO at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

6

Volume Fraction (scale)	0.0001172	±	1.56704e-0
fractal dimension	2.75486±	0.00486896	
correlation length (Å)	580.313±	11.9564	
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	58.3193±	0.450883	
Kuhn Length, b (Å)	52.07 ±	0.278125	

61.3212±	0.5638	345
0.0039734	±	0.000402304
2/N) = 2.26072		
<pre>Q < 0.06684</pre>		
FitQuitReason =	No deci	rease in chi-squared
	61.3212± 0.0039734 2/N) = 2.26072 < Q < 0.06684 FitQuitReason =	61.3212 ± 0.5638 0.0039734 ± 2 2/N) = 2.26072 4 < Q < 0.06684 FitQuitReason = No decreted by the second seco

FULL DATA SET FITTINGS:

high q data)

Volume Fraction (scale)	0.00145479		±	± 0.949301	
Block Radius (A)	6	±	0		
fractal dimension	2.94105±		0.001	59395	

correlation length (A)	365.1	93±	2.695	49
SLD block (A-2)	2.52062e-06		±	0.000899645
SLD solvent (A-2)	5.278e-06		±	0
bkgd (cm^-1 sr^-1)	0	±	0	
chisq = 2995.04 Npnts = 255 Sqrt(χ^{2}	2/N) = 3	.42713		
FitError = No Error FitQuitReason = No Error				

high q data)
Volume Fraction (scale)	0.000473488	±	3.55174e-06	
Block Radius (Å)	10.3561	±	0.39297	
fractal dimension	3.02439	±	0.0022475	
correlation length (Å)	530.544	±	5.78219	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	-0.000117499	±	5.68083e-05	
chisq = 909.186				
Npnts = 255	$Sqrt(\chi^2/N) = 1.88824$			
Fitted range = $[0,254] = 0.00116 < Q < 0.522$				
FitError = No Error	FitQuitReason =	No Erro	r	

Fit to SmearedFractal, Data file: G1_cool_absb

Figure 23. Bis-urea gelator in DMSO at 2 wt% concentration at lower temperature /(checking gelation reversibility) fitted to a Smeared fractal model (both low and high q data)

Volume Fraction (scale)	0.000913742	±	9.22167e-06	
Block Radius (Å)	9.68956	±	0.426641	
fractal dimension	3.00927	±	0.00306599	
correlation length (Å)	523.894	±	7.62412	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	0.00083537	±	0.000105655	
chisq = 469.845				
Npnts $= 255$	$Sqrt(\chi^{2}/N) = 1.3574$			
Fitted range = $[0,254] = 0.00116 < Q < 0.522$				
FitError = No Error FitQuitReason = No Error				

Global Fits

Figure 24. Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 25 degree C fitted to a Smeared fractal model (both low and high q data)

Global fit results Fit converged normally V chisq = 5868.51 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 4 Data Set: G1 25C absb i ; Function: SmearedFractal Coef 0 0.000735913 +- 3.87646e-06 Coef 1 6.07612 +- 0.256229 Coef 2 2.92905 +- 0.00118944 Coef 3 379.469 +- 2.08029 Coef 4 2.41e-06 +- 0 *HELD Coef 5 6.33e-06 +- 0 *HELD Coef 6 -5.85108e-05 +- 6.52705e-05 Data Set: G2 25C absb i ; Function: SmearedFractal Coef 0 0.000747876 +- 3.92416e-06 Coef 1 6.07612 +- 0.256229 *LINKED to G1 25C absb i; Coef 1 Coef 2 2.92905 +- 0.00118944 *LINKED to G1 25C absb i; Coef 2 *LINKED to G1 25C absb i; Coef 3 Coef 3 379.469 +- 2.08029 Coef_4 2.41e-06 +- 0 *HELD*LINKED to G1_25C_absb_i; Coef_4 Coef 5 6.33e-06 +- 0 *HELD*LINKED to G1 25C absb i; Coef 5 Coef 6 0.000670785 +- 6.66042e-05

Figure 25. Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 25 degree C fitted to a Smeared fractal flexible model (both low and high q data)

Fit converged normally V chisq = 5165.18 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 9 Data Set: G1 25C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.00102252 +- 0.000307869 Coef 1 2.92224 +- 0.00117542 Coef 2 388.474 +- 2.19833 Coef 3 2.41e-06 +- 0 *HELD Coef 4 5.278e-06 +- 0 *HELD Coef 5 2.15834 +- 0.0360284 Coef 6 28.7583 +- 0.419132 Coef 7 5.43593 +- 0.829629 Coef 8 -0.000272269 +- 0.000120752 Data Set: G2 25C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.00103979 +- 0.000313066 Coef 1 2.92224 +- 0.00117542 *LINKED to G1 25C absb i; Coef 1 *LINKED to G1 25C absb i; Coef 2 Coef 2 388.474 +- 2.19833 Coef 3 2.41e-06 +- 0 *HELD*LINKED to G1 25C absb i; Coef 3 Coef_4 5.278e-06 +- 0 *HELD*LINKED to G1_25C_absb_i; Coef_4 Coef 5 2.15834 +- 0.0360284 *LINKED to G1 25C absb i; Coef 5 *LINKED to G1 25C absb i; Coef 6 Coef 6 28.7583 +- 0.419132 *LINKED to G1 25C absb i; Coef 7 Coef 7 5.43593 +- 0.829629 Coef 8 0.000458424 +- 0.000122783

Global Fit Completed

Figure 26. Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at lower temperature (checking reversibility) fitted to a Smeared fractal model (both low and high q data)

Fit converged normally V chisq = 1509.61 V npnts= 510 V numNaNs= 0 V_numINFs= 0 Number of iterations: 2 Data Set: G1 cool absb i ; Function: SmearedFractal Coef 0 0.000466584 +- 3.71544e-06 Coef 1 8.52665 +- 0.216065 Coef 2 2.99628 +- 0.00176065 Coef 3 490.846 +- 4.16486 Coef 4 2.41e-06 +- 0 *HELD Coef 5 6.33e-06 +- 0 *HELD Coef 6 0.000920885 +- 9.84458e-05 Data Set: G2 cool absb i ; Function: SmearedFractal Coef 0 0.000862711 +- 5.40222e-06 Coef 1 8.52665 +- 0.216065 *LINKED to G1 cool absb i; Coef 1 Coef 2 2.99628 +- 0.00176065 *LINKED to G1 cool absb i; Coef 2 Coef 3 490.846 +- 4.16486 *LINKED to G1 cool absb i; Coef 3 Coef 4 2.41e-06 +- 0 *HELD*LINKED to G1 cool absb i; Coef 4 Coef 5 6.33e-06 +- 0 *HELD*LINKED to G1 cool absb i; Coef 5 Coef 6 7.11707e-05 +- 8.53838e-05

Figure 27 Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at lower temperature (checking reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Fit converged normally V chisq = 1446.74 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 16 Data Set: G1 cool absb i ; Function: SmearedFractalFlexCyl Coef 0 0.000659112 +- 0.000182266 Coef 1 2.99318 +- 0.00190673 Coef 2 495.723 +- 4.37439 Coef 3 2.41e-06 +- 0 *HELD Coef 4 6.33e-06 +- 0 *HELD Coef 5 9.87194 +- 1.65571 Coef 6 33.729 +- 1.54086 Coef 7 6.31325 +- 0.846381 Coef 8 0.000837785 +- 0.000151015 Data Set: G2 cool absb i ; Function: SmearedFractalFlexCyl Coef 0 0.00121856 +- 0.000336839 Coef_1 2.99318 +- 0.00190673 *LINKED to G1 cool absb i; Coef 1 *LINKED to G1 cool absb i; Coef 2 Coef 2 495.723 +- 4.37439 Coef 3 2.41e-06 +- 0 *HELD*LINKED to G1 cool absb i; Coef 3 Coef 4 6.33e-06 +- 0 *HELD*LINKED to G1 cool absb i; Coef 4 Coef 5 9.87194 +- 1.65571 *LINKED to G1 cool absb i; Coef 5 Coef 6 33.729 +- 1.54086 *LINKED to G1 cool absb i; Coef 6 Coef 7 6.31325 +- 0.846381 *LINKED to G1 cool absb i; Coef 7 Coef 8 -8.19094e-05 +- 0.000227892

Figure 28 Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 80 degree C (checking reversibility) fitted to a Smeared fractal model (both low and high q data)

Fit converged normally V chisq = 2449.71 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 6 Data Set: G1 80C absb_i ; Function: SmearedFractal Coef 0 0.000453464 +- 2.79455e-06 Coef 1 11.1802 +- 0.203776 Coef 2 3.02482 +- 0.00145601 Coef 3 498.888 +- 3.55165 Coef 4 2.41e-06 +- 0 *HELD Coef 5 5.278e-06 +- 0 *HELD Coef 6 -0.000155971 +- 5.32966e-05 Data Set: G2 80C absb i ; Function: SmearedFractal Coef 0 0.000688199 +- 3.67604e-06 Coef 1 11.1802 +- 0.203776 *LINKED to G1 80C absb i; Coef 1 Coef 2 3.02482 +- 0.00145601 *LINKED to G1 80C absb i; Coef 2 Coef 3 498.888 +- 3.55165 *LINKED to G1 80C absb i; Coef 3 Coef 4 2.41e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 4 Coef 5 5.278e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 5 Coef 6 0.000799316 +- 5.28811e-05

Figure 29 Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 80 degree C (checking reversibility) fitted to a Smeared fractal model (both low and high q data)

Global fit results Fit converged normally V chisq = 2433.83 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 3 Data Set: G1 80C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.000619264 +- 0.00022591 Coef 1 3.02375 +- 0.0015233 Coef 2 500.738 +- 3.64027 Coef 3 2.41e-06 +- 0 *HELD Coef 4 6.33e-06 +- 0 *HELD Coef 5 20.9003 +- 2.44532 Coef 6 35.081 +- 2.32707 Coef 7 5.8241 +- 1.08855 Coef 8 -0.000399335 +- 0.000133901 Data Set: G2 80C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.000939831 +- 0.000342826 Coef 1 3.02375 +- 0.0015233 *LINKED to G1 80C absb i; Coef 1 *LINKED to G1 80C absb i; Coef 2 Coef 2 500.738 +- 3.64027 *HELD*LINKED to G1 80C absb i; Coef 3 Coef 3 2.41e-06 +- 0 Coef 4 6.33e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 4 Coef 5 20.9003 +- 2.44532 *LINKED to G1 80C absb i; Coef 5 Coef 6 35.081 +- 2.32707 *LINKED to G1 80C absb i; Coef 6 *LINKED to G1 80C absb i; Coef 7 Coef 7 5.8241 +- 1.08855 Coef 8 0.000433575 +- 0.000192866

Figure 30 Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 80 degree C (checking reversibility) fitted to a Smeared fractal model (both low and high q data) ONLY SLD FIXED AND GLOBAL

Fit converged normally V chisq = 2318.41 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 2 Data Set: G1 80C absb_i ; Function: SmearedFractal Coef 0 0.000253451 +- 1.90195e-06 Coef 1 10.3557 +- 0.393378 Coef 2 3.02439 +- 0.00224786 Coef 3 530.541 +- 5.79074 Coef 4 2.41e-06 +- 0 *HELD Coef 5 6.33e-06 +- 0 *HELD Coef 6 -0.000117445 +- 5.68063e-05 Data Set: G2 80C absb i ; Function: SmearedFractal Coef 0 0.000357058 +- 2.23506e-06 Coef 1 11.5267 +- 0.242409 Coef 2 3.02736 +- 0.00191832 Coef 3 474.303 +- 4.40785 Coef 4 2.41e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 4 Coef_5 6.33e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 5 Coef 6 0.000791261 +- 5.36426e-05

Figure 31 Global fitting; Bis-urea gelator in DMSO at 2 and 5 wt% concentrations at 80 degree C (checking reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Fit converged normally V chisq = 2285.58 V npnts= 510 V numNaNs= 0 V numINFs= 0 Number of iterations: 3 Data Set: G1 80C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.000163611 +- 3.66867e-05 Coef 1 3.02446 +- 0.00238192 Coef 2 530.021 +- 5.9046 Coef 3 2.41e-06 +- 0 *HELD Coef 4 6.33e-06 +- 0 *HELD Coef 5 20.83 +- 7.2836 Coef 6 32.6161 +- 9.95336 Coef 7 10.9611 +- 2.09376 Coef 8 2.54262e-05 +- 7.49713e-05 Data Set: G2 80C absb i ; Function: SmearedFractalFlexCyl Coef 0 0.000985647 +- 0.000371382 Coef 1 3.02611 +- 0.00203408 Coef 2 476.224 +- 4.54785 Coef 3 2.41e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 3 Coef 4 6.33e-06 +- 0 *HELD*LINKED to G1 80C absb i; Coef 4 Coef 5 20.7313 +- 2.61683 Coef 6 37.6213 +- 2.47625 Coef 7 5.88557 +- 1.12145 Coef 8 0.000352788 +- 0.000213598

Fit to SmearedFractal Data file: G2 80C absb

data)

Volume Fraction (scale)	0.00066703	±	4.17134e-06	
Block Radius (Å)	$11.529 \ \pm$	0.242	2084	
fractal dimension	$3.02735\pm$	0.00	191763	
correlation length (Å)	474.299±	4.39	944	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	0.000791468	±	5.36455e-05	
chisq = 1409.22				
Npnts = 255 So	$qrt(\chi ^{2/N}) = 2.35082$			
Fitted range = $[0.254] = 0.00116 < O < 0.522$				
FitError = No Error	FitQuitReason =	No Er	ror	

q ($Å^{-1}$) Figure 33 Bis-urea gelator in DMSO at 5 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (low and high q data)

Volume Fraction (scale)	0.00157852	±	1.12744e-05
Block Radius (Å)	8.23741±	0.255	5121
fractal dimension	$2.9924 \ \pm$	0.002	215198
correlation length (Å)	473.305±	4.922	204
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å ⁻²)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	0.000114393	±	8.80235e-05
chisq = 862.58 Npnts = 255 Sqrt(x Fitted range = [0,254] = 0.0011	$(^{2}N) = 1.8392$ (6 < Q < 0.522)		
FitError = No Error	FitQuitReason =	No dec	crease in chi-squared

data)

Volume Fraction (scale)	0.00140455	±	8.48669e-06
Block Radius (Å)	7.17927±	0.26	5237
fractal dimension	2.91878±	0.00	0170856
correlation length (Å)	391.845±	3.10	515
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	0.0004209	±	6.64465e-05
chisq = 2741.61			
Npnts = 255	$Sqrt(\chi ^{2}/N) = 3.27893$		
Fitted range = $[0,254] = (0,254]$).00116 < Q < 0.522		
FitError = No Error	FitQuitReason =	No E	rror

Fit to SmearedFractalFlexCyl,

Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000174113	±	5.10126e-06	
fractal dimension	$2.97681 \pm$	0.00352097		
correlation length (Å)	477.531±	5.94962		
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
Contour Length (Å)	61.6077±	0.2601	08	

Kuhn Length, b (Å)	43.2419±	0.155	5746
Cylinder Radius (Å)	44.0413±	0.715	5548
bkgd (cm ⁻¹ sr ⁻¹)	0.00121237	±	7.75622e-05
chisq = 1009.44 Npnts = 255 Fitted range = [0,254] = FitError = No Error	$Sqrt(\chi ^{2/N}) = 1.98962$ 0.00116 < Q < 0.522 FitQuitReason =	No Err	or

Fit to SmearedFractalFlexCyl,

Smeared fractal model (low q data)

Volume Fraction (scale)	0.000161764	±	7.67877e-06
fractal dimension	2.97439±	0.0039	91004

correlation length (Å)	479.286±	6.08	716
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	61.9873±	0.73	8945
Kuhn Length, b (Å)	40.7336±	0.60	9362
Cylinder Radius (Å)	43.8945±	1.21	825
bkgd (cm ⁻¹ sr ⁻¹)	0.00178134	±	0.000549833
chisq = 486.981			
Npnts = 163	$Sqrt(\chi ^{2/N}) = 1.72847$		
Fitted range = $[0, 162]$ =	0.00116 < Q < 0.08755		
FitError = No Error	FitQuitReason =	No Er	ror

Fit to SmearedFractalFlexCyl, Data file: G2_80C_absb

Figure 37 Bis-urea gelator in DMSO at 5 wt% concentration at 80 degree C (checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	8.70351e-05	±	3.2462e-06
fractal dimension	3.03009±	0.002	299227
correlation length (Å)	453.313±	6.15	
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	59.6636±	0.838	3064
Kuhn Length, b (Å)	48.6347±	0.399	9632
Cylinder Radius (Å)	43.6925±	0.938	3615
bkgd (cm ⁻¹ sr ⁻¹)	0.0014086	±	5.12832e-05
chisq = 1691.87			
Npnts $= 255$	$Sqrt(\chi ^{2/N}) = 2.5758$		
Fitted range = $[0,254]$ =	= 0.00116 < Q < 0.522		
FitError = No Error	FitQuitReason =	- No En	ror

q (Å⁻¹) Figure 38 Bis-urea gelator in DMSO at 5 wt% concentration at 80 degree C (checking gelation reversibility) fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	7.71161e-05	±	4.1408e-06
fractal dimension	$3.02584 \pm$	0.00333986	
correlation length (Å)	456.359±	5.4125	2
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	51.9515±	0.1705	74
Kuhn Length, b (Å)	$49.4843\pm$	0.0762	624
Cylinder Radius (Å)	45.4618±	1.3241	9
bkgd (cm ⁻¹ sr ⁻¹)	0.00260916	±	0.000222777
chisq = 995.822 Npnts = 166 Sqrt(χ ^2 Fitted range = [0,165] = 0.00116 FitError = No Error	2/N) = 2.44927 < Q < 0.1034 FitQuitReason =	No Erro	r

Fit to SmearedFractalFlexCyl, Data file: G2_25C_absb

(both low and high q data)

Volume Fraction (scale)	0.000181381	±	2.40126e-06
fractal dimension	2.81818±	0.003	53109
correlation length (Å)	491.238±	7.022	41
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	$42.944 \hspace{0.1 in} \pm \hspace{0.1 in}$	0.095	9415
Kuhn Length, b (Å)	$60.5975 \pm$	0.2592	207
Cylinder Radius (Å)	48.6188±	0.400.	353
bkgd (cm ⁻¹ sr ⁻¹)	0.00165574	±	5.47527e-05
chisq = 2409.81 Npnts = 255	$Sqrt(\chi ^{2/N}) = 3.07413$		

Fitted range = [0,254] = 0.00116 < Q < 0.522FitError = No Error FitQuitReason = No Error

(low q data)

Volume Fraction (scale)	0.000130696	±	1.74871e-06
fractal dimension	2.75989±	0.00470147	
correlation length (Å)	578.464±	12.209	07
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	5.278e-06	±	0

Contour Length (Å)	41.5922±	0.09	08716
Kuhn Length, b (Å)	59.6375±	0.21	1338
Cylinder Radius (Å)	59.2477±	0.57	2704
bkgd (cm ⁻¹ sr ⁻¹)	0.00939278	±	0.000351893
chisq = 861.299 Npnts = 160 Fitted range = [0,159] = 0	Sqrt($\chi ^{2/N}$) = 2.32015 .00116 < Q < 0.07169		

q (Å⁻¹) Figure 41 Bis-urea gelator in DMF at 5 wt% concentration at 25 degree C fitted to a Smeared fractal model (both low and high q data)

±

Volume Fraction (scale)

Fit to SmearedFractal,

0.00798994

1.70614e-05

Block Radius (Å)	$6.59769 \pm$	0.03298	365
fractal dimension	$3.00782 \pm$	0.00041965	
correlation length (Å)	$348.16\ \pm$	1.11575	
SLD block (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm ^{-1} sr ^{-1})	-0.00196728	±	8.06502e-05
chisq = 7135.16 Npnts = 255 Sqrt(χ^2 Fitted range = [0,254] = 0.00116 < FitError = No Error F	/N) = 5.28971 < Q < 0.522 itQuitReason = 1	No decre	ase in chi-squared

Fit to SmearedFractal, Data file: G5_25C_absb

Volume Fraction (scale)	0.00797182	±	1.67697e-05	
Block Radius (Å)	$10.485 \ \pm$	0.118011		
fractal dimension	3.01219±	0.000550895		
correlation length (Å)	$340.802 \pm$	1.1862	3	
SLD block (Å ⁻²)	2.41e-06	±	0	
SLD solvent (Å-2)	6.33e-06	±	0	
bkgd (cm ^{-1} sr ^{-1})	-0.0333306	±	0.00119877	
chisq = 5007.57 Npnts = 172 Sqrt(χ^2/N) = 5.39572 Fitted range = [0,171] = 0.00116 < Q < 0.1348 FitError = No Error FitOuitReason = No decrease in chi-squared				
	`		1	

Fit to SmearedFractalFlexCyl, Data file: G5_25C_absb

Figure 43. Bis-urea gelator in DMF at 5 wt% concentration at 25 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000742773	±	5.49157e-06	
fractal dimension	3.00663±	0.000674705		
correlation length (Å)	332.712±	1.2034	18	
SLD block (Å-2)	2.41e-06	±	0	
SLD solvent (Å-2)	6.33e-06	±	0	
Contour Length (Å)	39.9212±	0.0353	3062	
Kuhn Length, b (Å)	23.9149±	0.0247	7604	
Cylinder Radius (Å)	27.4791±	0.1124	136	
bkgd (cm ⁻¹ sr ⁻¹)	0.00444961	±	6.36726e-05	
chisq = 9708.09 Npnts = 255 Sqrt($\chi^{2/N}$) = 6.17016 Fitted range = [0,254] = 0.00116 < Q < 0.522				

FitError = No Error FitQuitReason = No decrease in chi-squared

Fit to SmearedFractalFlexCyl, Data file: G5_25C_absb

Figure 44. Bis-urea gelator in DMF at 5 wt% concentration at 25 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)) 0.000658158	±	6.43567e-06
fractal dimension	3.00111±	0.000	790373
correlation length (Å)	338.097±	1.2692	21
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	40.3656±	0.042	0343
Kuhn Length, b (Å)	25.0502±	0.030	6829
Cylinder Radius (Å)	30.5365±	0.167	07
bkgd (cm ⁻¹ sr ⁻¹)	0.010629	±	0.000264599
chisq = 4469.72			
Npnts = 172	$Sqrt(\chi ^{2/N}) = 5.09772$		
Fitted range = $[0, 171]$ =	= 0.00116 < Q < 0.1348		
FitError = No Error	FitQuitReason =	No Erro	or

Figure 45. Bis-urea gelator in DMF at 5 wt% concentration at lower temperature (checking reversibility) fitted to a Smeared fractal model (both low and high q data)

Volume Fraction (scale	e) 0.00840362	±	2.66323e-05
Block Radius (Å)	6.45139±	0.05	80658
fractal dimension	$2.98929 \pm$	0.00	0696085
correlation length (Å)	387.368±	1.88	058
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00258558	±	0.000143072
chisq = 3315.38 Npnts = 250	$Sqrt(\chi ^{2}/N) = 3.64164$		

Fitted range = [0,249] = 0.00116 < Q < 0.502

fractal model (low q data)

Volume Fraction (scale)	0.00845391	± 3.29487e-05
Block Radius (Å)	$6.98859 \pm$	1.01546
fractal dimension	$2.98648 \pm$	0.000799753
correlation length (Å)	392.123±	2.06137

SLD block (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0089982	±	0.00635395
chisq = 2310.04			
Npnts = 171	$Sqrt(\chi ^{2/N}) = 3.67546$		
Fitted range = $[0,170]$ =	0.00116 < Q < 0.1296		
FitError = No Error	FitQuitReason =	No Er	rror

Fit to SmearedFractalFlexCyl,

fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.00065438	±	7.59492e-06
fractal dimension	2.97533±	0.00	112919
correlation length (Å)	391.574±	2.26	114
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	43.8413±	0.164	4422
Kuhn Length, b (Å)	20.5512±	0.072	2237
Cylinder Radius (Å)	27.6937±	0.174	4128
bkgd (cm ⁻¹ sr ⁻¹)	0.00453914	±	0.000109592
chisq = 4745.9 Npnts = 250 So Fitted range = $[0,249] = 0.0$	$qrt(\chi^2/N) = 4.35702$ 00116 < Q < 0.502		
FitError = No Error	FitQuitReason =	No Er	ror

Fit to SmearedFractalFlexCyl, Data file: G5_cool_absb

fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000526276	±	8.31113e-06
fractal dimension	2.96693±	0.00	134857
correlation length (Å)	$399.88 \ \pm$	2.51	797
SLD block (Å-2)	2.41e-06	±	0
SLD solvent (Å-2)	6.33e-06	±	0
Contour Length (Å)	$42.366 \ \pm$	0.072	27872
Kuhn Length, b (Å)	20.4802±	0.024	455
Cylinder Radius (Å)	30.7806±	0.27	3377
bkgd (cm ⁻¹ sr ⁻¹)	0.0125866	±	0.000439912
chisq = 2182.9			
Npnts = 172 Sqi	$rt(\chi^2/N) = 3.56248$		
Fitted range = $[0, 171] = 0.00$	0116 < Q < 0.1348		
FitError = No Error	FitQuitReason =	• No Er	ror

fractal flexible cylinder model (low and high q data)

0.000130089	±	3.75657e-06	
2.99797±	0.00021891		
$3262.2 \pm$	152.094	ļ	
9.82e-07	±	0	
5.278e-06	±	0	
40.6701±	0.09365	512	
$20.8082 \pm$	0.03045	573	
52.4526±	0.51895	54	
0.00317586	±	4.34466e-05	
(N) = 8.24875 < Q < 0.4188 itQuitReason = 1	No decre	ase in chi-squared	
	0.000130089 2.99797± 3262.2 ± 9.82e-07 5.278e-06 40.6701± 20.8082± 52.4526± 0.00317586 /N) = 8.24875 < Q < 0.4188 itQuitReason = N	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Figure 50 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000141572	±	3.52637e-06
fractal dimension	$2.99852 \pm$	0.000190209	
correlation length (Å)	3469.82±	139.46	9
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
Contour Length (Å)	$40.754 \ \pm$	0.0547574	
Kuhn Length, b (Å)	20.6132±	0.029027	
Cylinder Radius (Å)	51.6665±	0.485614	
bkgd (cm ⁻¹ sr ⁻¹)	0.00132249	±	0.00010633

 $\begin{array}{ll} chisq = 1810.61\\ Npnts = 246 & Sqrt(X^2/N) = 2.71297\\ Fitted \ range = [0,245] = 0.001298 < Q < 0.1332\\ FitError = No \ Error & FitQuitReason = No \ decrease \ in \ chi-squared \end{array}$

Figure 51 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0151505	± 0.0094568	31
Block Radius (Å)	$4.4519 \ \pm$	0.801316	
fractal dimension	3.00016±	0.000117457	
correlation length (Å)	7913.52±	4952.2	

SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00940374	±	0.0038959
chisq = 1648.8			
Npnts = 246	$Sqrt(\chi^{2}/N) = 2.58891$		
Fitted range = $[0,245]$ =	= 0.001298 < Q < 0.1332		
FitError = No Error	FitQuitReason =	No E	rror

Figure 52 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration at 80 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000108987	±	1.85819e-06
fractal dimension	$3.00797 \pm$	0.0003	33025
correlation length (Å)	1805.66±	56.770	9
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	5.278e-06	±	0
Contour Length (Å)	41.2649±	0.0752	.54
Kuhn Length, b (Å)	19.3548±	0.0287	975
Cylinder Radius (Å)	$36.0487 \pm$	0.4980	42
bkgd (cm ⁻¹ sr ⁻¹)	0.00406656	±	4.64393e-05
chisq = 17487.6 Npnts = 324 Sqrt(χ^2/N) = 7.3467 Fitted range = [0,323] = 0.001298 < Q < 0.4188 FitError = No Error FitQuitReason = No decrease in chi-squared			

Fit to SmearedFractalFlexCyl, Data file: set6_1scat80C_abs_b_txt

cylinder model (low q data)

Volume Fraction (scale)	0.000170193	±	4.00655e-06
fractal dimension	3.00338±	0.00	0193684
correlation length (Å)	3296.09±	128.9	926
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å ⁻²)	5.278e-06	±	0
Contour Length (Å)	27.5289±	0.014	45214
Kuhn Length, b (Å)	33.3963±	0.02	54209
Cylinder Radius (Å)	52.3272±	0.578	8697
bkgd (cm ⁻¹ sr ⁻¹)	0.00570982	±	0.000104592
chisq = 3901.87			
Npnts = 248 Sqrt	$\chi(\chi^{2/N}) = 3.96653$		
Fitted range = $[0,247] = 0.00$	1298 < Q < 0.141		
FitError = No Error	FitQuitReason =	No Er	ror

Fit to SmearedFractal,

(both low and high q data)

Volume Fraction (scale)	0.00656663	±	0.0010044
Block Radius (Å)	$6.4655 \ \pm$	0.248	384
fractal dimension	3.00286±	0.000465411	
correlation length (Å)	4452.68±	680.8	341
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00383801	±	0.000610977
abian = 12617.2			

chisq = 13617.2 $Sqrt(X^2/N) = 6.48294$ Npnts = 324Fitted range = [0,323] = 0.001298 < Q < 0.4188FitError = No Error FitQuitReason = No Error

S73

(low q data)

Volume Fraction (scale)	0.0101187	±	0.00632506	
Block Radius (Å)	7.79954±	1.03692	2	
fractal dimension	3.00186±	0.0011	603	
correlation length (Å)	6843.37±	4260.72	2	
SLD block (Å-2)	9.82e-07	±	0	
SLD solvent (Å-2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	-0.026001	±	0.00858984	
chisq = 3850.79 Npnts = 247 Sqrt(χ^2/N) = 3.94845 Fitted range = $[0,246] = 0.001298 < Q < 0.1371$				

Figure 51 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration at 25 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000241678	±	3.94792e-06
fractal dimension	$2.99955 \pm$	0.0001	33232
correlation length (Å)	2735.25±	70.721	3
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	5.278e-06	±	0
Contour Length (Å)	39.8083±	0.0299	0754
Kuhn Length, b (Å)	20.1013±	0.0319	61
Cylinder Radius (Å)	$49.891 \ \pm$	0.2924	-16

chisq = 25330.9 Npnts = 324 Sqrt(χ^2/N) = 8.84205 Fitted range = [0,323] = 0.001298 < Q < 0.4188 FitError = No Error FitQuitReason = No Error

Fit to SmearedFractalFlexCyl, Data file: set6_1scat25C_abs_b_txt

bkgd (cm⁻¹ sr⁻¹)

Figure 52 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration at 25 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000341705	±	3.90752e-06
fractal dimension	3.00161±	0.0002	213785
correlation length (Å)	1650.84±	29.354	14
SLD block (Å-2)	9.82e-07	±	0

SLD solvent (Å ⁻²)	5.278e-06	±	0
Contour Length (Å)	$37.4496 \pm$	0.03858	356
Kuhn Length, b (Å)	$40.0577 \pm$	0.02362	267
Cylinder Radius (Å)	54.2296±	0.22693	38
bkgd (cm ⁻¹ sr ⁻¹)	0.00223991	±	0.000112054
chisq = 3486.04 Npnts = 245 Sqrt(χ^2 / Fitted range = [0,244] = 0.001298 FitError = No Error F	(N) = 3.7721 < Q < 0.1293 itQuitReason = 1	No decre	ase in chi-squared

Fit to SmearedFractal,

Data file: set6_1scat25C_abs_b_txt

cylinder model (both low and high q data)

Volume Fraction (scale)	0.0169844	±	0.00222709	
Block Radius (Å)	4.62883±	0.140249		
fractal dimension	3.00192±	0.000264134		
correlation length (Å)	4097.59±	537.212		
SLD block (Å -2)	9.82e-07	±	0	
SLD solvent (Å -2)	5.278e-06	±	0	
bkgd (cm ⁻¹ sr ⁻¹)	-0.00636368	±	0.00058467	
chisq = 23620.8 Npnts = 324 Sqrt(χ^2/N) = 8.53837 Fitted range = [0,323] = 0.001298 < Q < 0.4188 FitError = No Error FitQuitReason = No decrease in chi-square				

Fit to SmearedFractal, Data file: set6_1scat25C_abs_b_txt

q ($Å^{-1}$) Figure 59 Non-fluorinated Bis-urea gelator in DMSO at 2 wt% concentration at 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0258968	±	0.008664
Block Radius (Å)	5.2153 ±	0.40	5923
fractal dimension	3.00078±	0.00	0269183
correlation length (Å)	$6406.52 \pm$	2143	.17
SLD block (Å -2)	9.82e-07	±	0
SLD solvent (Å ⁻²)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0253356	±	0.00393714
chisq = 2732.37 Npnts = 248 Sq. Fitted range = $[0, 247] = 0.01$	$rt(\chi^{2/N}) = 3.31928$		
FitError = No Error	FitQuitReason =	= No Er	ror

Fit to SmearedFractalFlexCyl, Data file: set6_2scat25C_abs_b_txt

fractal flexible cylinder model (both low and high q data)

e-05

cylinder model (low q data)

Volume Fraction (scale)	0.000188983	±	3.47652e-06
fractal dimension	$2.99635 \pm$	0.0002	275772
correlation length (Å)	2139.47±	62.172	27
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	20.2472±	0.0153	641
Kuhn Length, b (Å)	59.6474±	0.0248	3329
Cylinder Radius (Å)	51.0068±	0.3479	009
bkgd (cm ⁻¹ sr ⁻¹)	0.00403276	±	0.000113852

chisq = 1799.04 Npnts = 248 $Sqrt(\chi^2/N) = 2.69336$ Fitted range = [0,247] = 0.001298 < Q < 0.141FitError = No Error FitQuitReason = No Error

(both low and high q data)

Volume Fraction (scale)	0.00891257	±	0.00269511
Block Radius (Å)	5.20312±	0.3664	39
fractal dimension	3.00028±	0.0001	06666
correlation length (Å)	$7304.09 \pm$	2216.4	3
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0

chisq = 19037.4 Npnts = 324 Sqrt(χ^2/N) = 7.66535 Fitted range = [0,323] = 0.001298 < Q < 0.4188 FitError = No Error FitQuitReason = No Error

Figure 56 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration at 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0104953	±	0.00787793
Block Radius (Å)	5.47124±	0.905	5503

fractal dimension	$2.99974 \pm$	0.00018552	
correlation length (Å)	8900.13±	6705.4	ł
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0155861	±	0.00591784
chisq = 1328.74			

Npnts = 248 Sqrt(χ^2/N) = 2.3147 Fitted range = [0,247] = 0.001298 < Q < 0.141 FitError = No Error FitQuitReason = No Error

Fit to SmearedFractalFlexCyl, Data file: set6_2scat80C_abs_b_txt

cylinder model (both low and high q data)

Volume Fraction (scale)	0.0023247	±	0.000162014
fractal dimension	3.00613±	0.000	408195
correlation length (Å)	1179.45±	11.51	44
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å ⁻²)	6.334e-06	±	0
Contour Length (Å)	26.2905±	0.023	5996
Kuhn Length, b (Å)	41.7198±	0.036	5835
Cylinder Radius (Å)	$6.47832 \pm$	0.211	899
bkgd (cm ⁻¹ sr ⁻¹)	0.000124234	±	0.000256619
chisq = 10100.1 Npnts = 324 Sqrt(χ Fitted range = [0,323] = 0.0012 FitError = No Error	^2/N) = 5.58329 98 < Q < 0.4188 FitQuitReason =	No dec	rease in chi-squared

 $q~(\text{\AA}^{-1})$ Figure 58 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration at 80 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.00448687	±	0.00147288
fractal dimension	3.00211±	0.00040	09075
correlation length (Å)	1918.39±	137.34	5
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	$26.5034 \pm$	0.04049	965
Kuhn Length, b (Å)	$40.7421\pm$	0.06133	354
Cylinder Radius (Å)	$5.77345 \pm$	0.7576	14
bkgd (cm ⁻¹ sr ⁻¹)	-0.0127782	±	0.00265627
chisq = 1354.3 Npnts = 252 Sqrt(χ^2 Fitted range = [0,251] = 0.001298 FitError = No Error F	Q(N) = 2.31823 < Q < 0.1567 itQuitReason = 1	No Erroi	

(both low and high q data)

Volume Fraction (scale)	0.00226691	±	8.38259e-05
Block Radius (Å)	9.26886±	0.1058	71
fractal dimension	$3.00074 \pm$	0.0001	49885
correlation length (Å)	3592.63±	137.92	6
SLD block (Å ⁻²)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.000418472	±	0.00017872
chisq = 8510.9 Npnts = 324	$Sqrt(\chi ^{2}/N) = 5.12525$		

Fitted range = [0,323] = 0.001298 < Q < 0.4188FitError = No Error FitQuitReason = No Error

(low q data)

Volume Fraction (scale)	0.00387184	±	0.00210814
Block Radius (Å)	$9.50888 \pm$	1.1376	53
fractal dimension	$3.0005 \pm$	0.0003	22876
correlation length (Å)	6134.45±	3357.4	Ļ
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0

chisq = 878.887Npnts = 250 Sqrt(χ^2/N) = 1.87498Fitted range = [0,249] = 0.001298 < Q < 0.1489FitError = No Error FitQuitReason = No Error

Figure 68 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000137266	± 2.74352e-06
fractal dimension	2.99386±	0.000391798
correlation length (Å)	1860.52±	65.4517

SLD block (Å⁻²) 9.82e-07 0 ± SLD solvent (Å ⁻²) 6.334e-06 0 \pm Contour Length (Å) $25.9101 \pm$ 0.0145713 Kuhn Length, b (Å) 0.0165129 $53.6934 \pm$ Cylinder Radius (Å) $49.3846 \pm$ 0.421282 bkgd (cm $^{-1}$ sr $^{-1}$) 0.00437734 4.73357e-05 ± chisq = 25947.3Npnts = 324 $Sqrt(\chi ^{2}N) = 8.94898$ Fitted range = [0,323] = 0.001298 < Q < 0.4188FitError = No Error FitQuitReason = No decrease in chi-squared

Fit to SmearedFractalFlexCyl, Data file: set6 2 cool25C abs b txt

Figure 69 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)

 $0.000135113 \pm$

2.63088e-06

fractal dimension	$2.99359 \pm$	0.00039	95
correlation length (Å)	1810.63±	61.4222	2
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	26.1042±	0.01183	376
Kuhn Length, b (Å)	53.3169±	0.04901	105
Cylinder Radius (Å)	$48.9343 \pm$	0.42783	34
bkgd (cm ⁻¹ sr ⁻¹)	0.00384721	±	0.000114632
chisq = 1445.79 Npnts = 248 Sqrt(χ^{2} Fitted range = [0,247] = 0.001298 FitError = No Error F	P(N) = 2.41449 < Q < 0.141 itQuitReason = 1	No Error	

Fit to SmearedFractal, Data file: set6_2_cool25C_abs_b_txt

q (Å⁻¹) Figure 61 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (both low and high q data)

Volume Fraction (scale)	0.00442319	±	0.000777766
Block Radius (Å)	$6.22962 \pm$	0.2736	52
fractal dimension	$2.99952 \pm$	9.0604	15e-05
correlation length (Å)	$4516.8\ \pm$	806.45	59
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00376274	±	0.000669515
chisq = 22143.6			
Npnts = 324 Sqrt(χ /	$^{2/N}$ = 8.26707		
Fitted range = $[0,323] = 0.00129$	8 < O < 0.4188		
FitError = No Error	FitOuitReason =	No Erro	or
		- · · · Dir ·	-

q ($Å^{-1}$) Figure 62 Non-fluorinated Bis-urea gelator in DMF at 2 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0059325	±	0.00261854
Block Radius (Å)	$6.05469 \pm$	0.642	2726
fractal dimension	$2.99863 \pm$	0.000	0575994
correlation length (Å)	$6345.85 \pm$	2836	5.09
SLD block (Å ⁻²)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0112379	±	0.00286591
chisq = 972.657			
Npnts = 248	$Sqrt(\chi ^{2}/N) = 1.9804$		
Fitted range = $[0,247]$ =	0.001298 < Q < 0.141		
FitError = No Error	FitQuitReason =	= No Er	ror

Fit to SmearedFractalFlexCyl, Data file: set6_3scat25C_abs_b_txt

(low and high q data)

Volume Fraction (scale)	0.000272144	±	4.01551e-06
fractal dimension	$2.99934 \pm$	0.000	0234131
correlation length (Å)	1897.85±	45.46	569
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å ⁻²)	5.278e-06	±	0
Contour Length (Å)	38.9789±	0.032	25834
Kuhn Length, b (Å)	38.6071±	0.159	9953
Cylinder Radius (Å)	57.5839±	0.283	3664
bkgd (cm ⁻¹ sr ⁻¹)	0.00566592	±	4.62883e-05
chisq = 77259.3 Npnts = 324 Sqrt Fitted range = [0,323] = 0.00	$f(\chi^{2/N}) = 15.442$ 1298 < Q < 0.4188		
FitError = No Error	FitQuitReason =	No En	ror

cylinder model (low q data)

Volume Fraction (scale)	0.000285926	±	4.14852e-06	
fractal dimension	3.00052±	0.000221688		
correlation length (Å)	1871.51±	40.216	5	
SLD block (Å-2)	9.82e-07	±	0	
SLD solvent (Å -2)	5.278e-06	±	0	
Contour Length (Å)	39.0356±	0.117085		
Kuhn Length, b (Å)	38.1632±	0.0847	7979	

Cylinder Radius (Å)	$55.5676 \pm$	0.2724	09
bkgd (cm ⁻¹ sr ⁻¹)	0.0022333	±	0.000111313
chisq = 4424.92			
Npnts $= 246$	$Sqrt(\chi ^{2/N}) = 4.24116$		
Fitted range = $[0,245]$ =	0.001298 < Q < 0.1332		
FitError = No Error	FitQuitReason =	No Erro	r

Fit to SmearedFractal, Data file: set6_3scat25C_abs_b_txt

(low and high q data)

Volume Fraction (scale)	0.0105701	± 0.00118	172
Block Radius (Å)	5.62584±	0.153096	
fractal dimension	$3.00327 \pm$	0.000390851	
correlation length (Å)	3031.83±	338.974	

9.82e-07	±	0
5.278e-06	±	0
-0.00420425	±	0.000510833
$Sqrt(\chi ^{2/N}) = 15.0278$		
0.001298 < Q < 0.4188		
FitQuitReason =	No E	rror
	9.82e-07 5.278e-06 -0.00420425 Sqrt($\chi^{2/N}$) = 15.0278 0.001298 < Q < 0.4188 FitQuitReason =	9.82e-07 \pm 5.278e-06 \pm -0.00420425 \pm Sqrt($\chi^{2/N}$) = 15.0278 0.001298 < Q < 0.4188 FitQuitReason = No E

Fit to SmearedFractal, Data file: set6_3scat25C_abs_b_txt

 $\label{eq:q} q~(\text{\AA}^{-1})$ Figure 66 Non-fluorinated Bis-urea gelator in DMSO at 5 wt% concentration at 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale) $0.02222\pm$ 0.0123586

Block Radius (Å)	$5.49399 \pm$	0.67726	56
fractal dimension	3.00067±	0.00038	81737
correlation length (Å)	$6682.22 \pm$	3716.02	2
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0252652	±	0.00607293
chisq = 3366.75 Npnts = 247 Sqrt(χ^2 Fitted range = [0,246] = 0.001298 FitError = No Error F	(N) = 3.69196 < Q < 0.1371 itQuitReason = 1	No Error	

Fit to SmearedFractalFlexCyl, Data file: set6_3scat80C_abs_b_txt

flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000283607	±	6.03613e-06
fractal dimension	$3.00077\pm$	0.00	0167105
correlation length (Å)	$2893.84 \pm$	102.	116
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å ⁻²)	5.278e-06	±	0
Contour Length (Å)	22.4934±	0.00	893391
Kuhn Length, b (Å)	38.8147±	0.00	758556
Cylinder Radius (Å)	49.7568±	0.43	8411
bkgd (cm ⁻¹ sr ⁻¹)	0.00652505	±	4.79914e-05
chisq = 65489.1 Npnts = 324 Sqrt	$t(\chi^{2/N}) = 14.2171$		
Fitted range = $[0,323] = 0.00$	1298 < Q < 0.4188		
FitError = No Error	FitQuitReason =	No Er	ror

Fit to SmearedFractalFlexCyl,

cylinder model (low q data)

± 0.0001	64334			
± 102.01	.2			
' ±	0			
06 ±	0			
± 0.0017	'5069			
± 0.0063	37624			
± 0.4398	325			
602 ±	0.000112952			
chisq = 3258.7 Npnts = 248 Sqrt(χ^2/N) = 3.6249 Fitted range = [0,247] = 0.001298 < Q < 0.141 FitError = No Error FitQuitReason = No decrease in chi-squared				
	± 0.0017 ± 0.0063 ± 0.4398 502 ± 249 141			

Fit to SmearedFractal,

model (low and high q data)

Volume Fraction (scale)	1	0.0100804	±	0.00131944
Block Radius (Å)		6.27239±	0.2043	377
fractal dimension		3.00251±	0.0003	354015
correlation length (Å)		4285.27±	561.42	29
SLD block (Å ⁻²)		9.82e-07	±	0
SLD solvent (Å-2)		5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)		-0.0052115	±	0.00074387
chisq = 58252.2 Npnts = 324	Sqrt(x ^2	2/N) = 13.4086		

Fitted range = [0,323] = 0.001298 < Q < 0.4188 FitError = No Error FitQuitReason = No Error

Figure 79 Non-fluorinated Bis-urea gelator in DMSO at 5 wt% concentration at 80 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0132777	± 0.00584578
Block Radius (Å)	7.10657±	0.67679
fractal dimension	3.00104±	0.00047173
correlation length (Å)	$5862.85 \pm$	2582.35

SLD block (Å ⁻²)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm $^{-1}$ sr $^{-1}$)	-0.0270278	±	0.00600539
chisq = 2899.76			
Npnts = 248	$Sqrt(\chi^{2}/N) = 3.41944$		
Fitted range = $[0,247] = 0$	0.001298 < Q < 0.141		
FitError = No Error	FitQuitReason =	No E	rror

Fit to SmearedFractalFlexCyl, Data file: set6_3_cool25_abs_b_txt

fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000231944	±	4.91926e-06
fractal dimension	2.99741±	0.0002	51204

correlation length (Å)	2161.87±	72.027	3
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	5.278e-06	±	0
Contour Length (Å)	31.1435±	0.0192	52
Kuhn Length, b (Å)	36.4921±	0.0395	361
Cylinder Radius (Å)	53.7741±	0.3790	28
bkgd (cm ⁻¹ sr ⁻¹)	0.00638803	±	4.67613e-05
chisq = 78674.6 Npnts = 324 Sqrt(χ^{\wedge} Fitted range = [0,323] = 0.001299	2/N) = 15.5828 8 < O < 0.4188		
FitError = No Error	FitQuitReason =	No Erro	r

Fit to SmearedFractalFlexCyl, Data file: set6_3_cool25_abs_b_txt

q (Å⁻¹) Figure 71 Non-fluorinated Bis-urea gelator in DMSO at 5 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale)	0.000262394	±	4.83774e-06	
fractal dimension	$2.99876 \pm$	0.0002	19815	
correlation length (Å)	2304.79±	66.946	4	
SLD block (Å-2)	9.82e-07	±	0	
SLD solvent (Å -2)	5.278e-06	±	0	
Contour Length (Å)	31.2717±	0.0340	122	
Kuhn Length, b (Å)	$36.0495 \pm$	0.0426	208	
Cylinder Radius (Å)	52.0105±	0.3488	49	
bkgd (cm ^{-1} sr ^{-1})	0.0023136	±	0.000111241	
chisq = 3571.26 Npnts = 247 Sqrt(χ^2/N) = 3.80244 Fitted range = [0,246] = 0.001298 < Q < 0.1371 FitError = No Error FitQuitReason = No decrease in chi-squared				

Fit to SmearedFractal, Data file: set6_3_cool25_abs_b_txt

fractal model (low and high q data)

Volume Fraction (scale)	0.00853758	±	0.00097071
Block Radius (Å)	5.90371±	0.1665	506
fractal dimension	3.00318±	0.0003	99867
correlation length (Å)	$2976.3\ \pm$	339.58	33
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00252074	±	0.000473132
chisq = 74990.6 Npnts = 324 Sqrt(χ^{\wedge} Fitted range = [0,323] = 0.00129	2/N = 15.2136 8 < Q < 0.4188	N. Euro	
FILEITOF = NO ETTOF	ruQuitkeason =	INO ETTO	1

q ($Å^{-1}$) Figure 73 Non-fluorinated Bis-urea gelator in DMSO at 5 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.016065	±	0.00728533
Block Radius (Å)	5.28089±	0.618	883
fractal dimension	$3.00038 \pm$	0.000	19698
correlation length (Å)	5949.84±	2706.	.4
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	5.278e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0154688	±	0.00374759
chisq = 3014.07 Nppts = 246	$Sart(\gamma ^{2}N) = 3.50033$		

 $\label{eq:spin} \begin{array}{ll} Npnts = 246 & Sqrt(\chi \ ^2/N) = 3.50033 \\ Fitted \ range = [0,245] = 0.001298 < Q < 0.1332 \\ FitError = No \ Error & FitQuitReason = No \ Error \end{array}$

cylinder model (both low and high q data)

Volume Fraction (scale)	0.000513121	±	4.41295e-06
fractal dimension	3.00126±	0.000185784	
correlation length (Å)	1399.56±	17.9192	
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	34.0226±	0.0276892	
Kuhn Length, b (Å)	$35.946 \pm$	0.0603705	
Cylinder Radius (Å)	47.6333±	0.1347	48
---	----------------------------	---------	------------
bkgd (cm ⁻¹ sr ⁻¹)	0.00721758	±	5.0399e-05
chisq = 86760.3			
Npnts = 324	$Sqrt(\chi^2/N) = 16.3639$		
Fitted range = $[0,323] = 0$.001298 < Q < 0.4188		
FitError = No Error	FitQuitReason =	No Erro	r

Fit to SmearedFractalFlexCyl, Data file: set6_4scat25C_abs_b_txt

cylinder model (low q data)

Volume Fraction (scale)	0.000490796	±	4.15601e-06
fractal dimension	3.00127±	0.0001	98549

correlation length (Å)	$1280.54 \pm$	16.5	737	
SLD block (Å-2)	9.82e-07	±	0	
SLD solvent (Å ⁻²)	6.334e-06	±	0	
Contour Length (Å)	34.5525±	0.054	42503	
Kuhn Length, b (Å)	35.72 ±	0.012	21842	
Cylinder Radius (Å)	46.5616±	0.13	503	
bkgd (cm ⁻¹ sr ⁻¹)	0.00527778	±	0.00011928	
chisq = 7239.38				
Npnts = 248	$Sqrt(\chi ^{2}/N) = 5.40287$			
Fitted range = $[0.247] = 0.001298 < O < 0.141$				
FitError = No Error	FitQuitReason =	No Er	ror	

Fit to SmearedFractal, Data file: set6_4scat25C_abs_b_txt

(low and high q data)

Volume Fraction (scale)	0.0185479	±	0.0013052
Block Radius (Å)	$4.95684 \pm$	0.082	25559
fractal dimension	3.00231±	0.00	0180932
correlation length (Å)	2647.61±	187.	161
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.012645	±	0.000631097
chisq = 78314.7 Npnts = 324 Sqrt(χ' Fitted range = [0,323] = 0.0012 FitError = No Error	^2/N) = 15.5471 98 < Q < 0.4188 FitQuitReason =	= No Er	ror
	-		

Fit to SmearedFractal, Data file: set6_4scat25C_abs_b_txt

(low and high q data)

Volume Fraction (scale)	0.0625673	±	0.0375071
Block Radius (Å)	$4.65844 \pm$	0.588	3822
fractal dimension	$3.00027 \pm$	0.000)161316
correlation length (Å)	9301.63±	5575	.4
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0684226	±	0.0174035
chisq = 4115.35 Npnts = 248 Sqrt(χ^{\wedge}	(2/N) = 4.07359		

Fitted range = [0,247] = 0.001298 < Q < 0.141</th>FitError = No ErrorFitQuitReason = No Error

 $q~(\text{\AA}^{-1})$ Figure 88 Non-fluorinated Bis-urea gelator in DMF at 5 wt% concentration at 80 degree C fitted to a Smeared fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000311728	±	3.26548e-06
fractal dimension	3.00506±	0.0002	2129
correlation length (Å)	1585.16±	26.750)5
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	$36.056 \ \pm$	0.0676	5509
Kuhn Length, b (Å)	35.7901±	0.0613	985
Cylinder Radius (Å)	46.1284±	0.1970)42
bkgd (cm ⁻¹ sr ⁻¹)	0.0103697	±	5.29357e-05
chisq = 80056.2 Npnts = 324 Sqrt(χ^{2} Fitted range = [0,323] = 0.00129 FitError = No Error	2/N) = 15.719 8 < Q < 0.4188 FitQuitReason =	No Erro	or

Fit to SmearedFractalFlexCyl, Data file: set6_4scat80C_abs_b_txt

q (Å⁻¹) Figure 89 Non-fluorinated Bis-urea gelator in DMF at 5 wt% concentration at 80 degree C fitted to a Smeared fractal flexible cylinder model (low q data)

Volume Fraction (scale))	0.000282925	±	3.45643e-06
fractal dimension		3.00383±	0.0002	21414
correlation length (Å)		1727.71±	32.277	1
SLD block (Å-2)		9.82e-07	±	0
SLD solvent (Å -2)		6.334e-06	±	0
Contour Length (Å)		36.1135±	0.0809	172
Kuhn Length, b (Å)		33.9615±	0.0591	918
Cylinder Radius (Å)		47.7223±	0.2270	45
bkgd (cm ⁻¹ sr ⁻¹)		0.0137678	±	0.00011747
chisq = 5987.82 Npnts = 250	Sqrt(\chi_2/1	N) = 4.894		

Fitted range = [0,249] = 0.001298 < Q < 0.1489 FitError = No Error FitQuitReason = No decrease in chi-squared

Fit to SmearedFractal,

Figure 78 Non-fluorinated Bis-urea gelator in DMF at 5 wt% concentration at 80 degree C fitted to a Smeared fractal model (low and high q data)

Volume Fraction (scale)	0.011256	±	0.000960145
Block Radius (Å)	6.27339±	0.134066	
fractal dimension	3.00204±	0.000205683	
correlation length (Å)	3461.72±	297.358	
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0

 $\begin{array}{ll} chisq = 61378.4 \\ Npnts = 324 & Sqrt(\chi \ ^2/N) = 13.7637 \\ Fitted \ range = [0,323] = 0.001298 < Q < 0.4188 \\ FitError = No \ Error & FitQuitReason = No \ Error \end{array}$

Figure 79 Non-fluorinated Bis-urea gelator in DMF at 5 wt% concentration at 80 degree C fitted to a Smeared fractal model (low q data)

Volume Fraction (scale)	0.0197285	±	0.0102853
Block Radius (Å)	6.83763±	0.75	5084

fractal dimension	$3.00074 \pm$	0.000388405	
correlation length (Å)	6217.14±	3241.0)4
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0533423	±	0.0146456
chisq = 4400.54			

Npnts = 249 $Sqrt(\chi^2/N) = 4.20391$ Fitted range = [0,248] = 0.001298 < Q < 0.1449FitError = No Error FitQuitReason = No Error

Fit to SmearedFractalFlexCyl,

fractal flexible cylinder model (both low and high q data)

Volume Fraction (scale)	0.000399939	±	4.33449e-06
fractal dimension	$2.99989 \pm$	0.000280766	
correlation length (Å)	$1380.3 \pm$	22.5035	
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å -2)	6.334e-06	±	0
Contour Length (Å)	33.3266±	0.0778	99
Kuhn Length, b (Å)	46.5913±	0.1332	44
Cylinder Radius (Å)	50.7789±	0.1782	51
bkgd (cm ⁻¹ sr ⁻¹)	0.00688075	±	5.22515e-05
chisq = 87368.2 Npnts = 324 Sqrt(χ ^2	2/N) = 16.4212		
Fitted range = $[0,323] = 0.001298 < Q < 0.4188$			
FitError = No Error	FitQuitReason =	No Erro	r

Fit to SmearedFractalFlexCyl, Data file: set6_4_cool25_abs_b_txt

fractal flexible cylinder model (low q data)

$2.99972 \pm$	0.000280029		
1405.17±	22.939	06	
9.82e-07	±	0	
6.334e-06	±	0	
34.3127±	0.0483	585	
45.1583±	0.0201	203	
$50.7005 \pm$	0.1810	139	
0.00466354	±	0.000119003	
2/N) = 4.92994 3 < Q < 0.141 FitQuitReason =	No decr	ease in chi-squared	
	$2.99972 \pm$ $1405.17 \pm$ 9.82e-07 6.334e-06 $34.3127 \pm$ $45.1583 \pm$ $50.7005 \pm$ 0.00466354 2/N) = 4.92994 3 < Q < 0.141 FitQuitReason =	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Fit to SmearedFractal, Data file: set6_4_cool25_abs_b_txt

fractal model (low and high q data)

Volume Fraction (scale)	0.0136826	±	0.00164759
Block Radius (Å)	5.18659±	0.14	7781
fractal dimension	3.00178±	0.00	0240587
correlation length (Å)	3132.28±	378.	857
SLD block (Å ⁻²)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.00944391	±	0.000888972
chisq = 80610.3			
Npnts = 324	$Sqrt(\chi^{2}/N) = 15.7733$		
Fitted range = $[0,323]$ =	0.001298 < Q < 0.4188		
FitError = No Error	FitQuitReason =	No Er	TOT

 $\label{eq:q} q~(\text{\AA}^{-1})$ Figure 82. Non-fluorinated Bis-urea gelator in DMF at 5 wt% concentration cooled down to 25 degree C fitted to a Smeared fractal model (low q data only)

Volume Fraction (scale)	0.0275813	±	0.0151294
Block Radius (Å)	4.41458±	0.58103	32
fractal dimension	2.99996±	3.5663	5e-05
correlation length (Å)	$6705 \pm $	3688.47	7
SLD block (Å-2)	9.82e-07	±	0
SLD solvent (Å-2)	6.334e-06	±	0
bkgd (cm ⁻¹ sr ⁻¹)	-0.0242616	±	0.00653102
chisq = 3686.01 Npnts = 248 Sqrt(χ^{2} Fitted range = [0,247] = 0.001298	2/N = 3.85525 < Q < 0.141		

Table 1. Gaussian Fit Results For Fluorinated Bis-Urea Gelator

High q X0 peak data points_florinated gelator_Gaussain Fit

Conc. (wt%)	Solvent	Code	Tem p (°C)	Peak height 1	Error bar	Peak height 1	Error bar	D spacing	D spacing	Peak positio n ratio
				0.1621		0.3276	0.00044	38.7247	19.1656	2.02053
2	DMSO	G1	25	7	0.00124	7	3	9	2	4
				0.1606		0.3305		39.0936	18.9963	2.05795
2	DMSO	G1	80	4	0.00117	9	0.00651	3	4	6
				0.1630		0.3557		38.5228	17.6518	
2	DMSO	G1	cool	2	0.00147	7	0.0432	8	5	2.18237
					0.00037	0.3199		38.9095	19.6268	1.98246
5	DMSO	G2	25	0.1614	7	7	0.00507	4	4	6
				0.1620	0.00094	0.3192		38.7582	19.6686	1.97056
5	DMSO	G2	80	3	6	9	0.00491	5	4	1
						0.3189		39.0304	19.6883	1.98241
5	DMSO	G2	cool	0.1609	0.00113	7	0.00523	5	7	1
				0.1580		0.3226		39.7367	19.4632	2.04163
2	DMF	G4	25	4	0.00136	6	0.0142	8	1	5
				STRUCT	RUE					
2	DMF	G4	80	BROKE						
				0.1616	0.00094	0.3124		38.8589	20.0985	
2	DMF	G4	cool	1	3	6	0.00924	8	7	1.93342
								39.3977	19.5821	
5	DMF	G5	25	0.1594	0.00031	0.3207	0.00172	4	6	2.01192
				STRUCT	RUE					
5	DMF	G5	80	BROKE						
				0.1585	0.00061	0.3203		39.6089	19.6023	2.02062
5	DMF	G5	cool	5	6	7	0.0024	6	3	4

Table 2. Gaussian Fit Results For Non-fluorinated Bis-Urea Gelator

High q X0 peak data points_non-florinated gelator_Gaussain Fit

Conc. (wt%)	Solvent	Code	Temp (°C)	Peak height 1	Error bar	Peak height 1	Error bar	D spacing	D spacing	Peak positio n ratio
				0.1806	0.00012	0.3577	0.00018	34.7691	17.5536	1.98073
2	DMSO	6-1	25	2	4	6	3	3	7	3
				0.1784	0.00027	0.3482		35.1899	18.0345	
2	DMSO	6-1	80	6	7	2	0.00337	6	8	1.95125
				0.1811		0.3606		34.6597	17.4134	1.99039
2	DMSO	6-1	Cool	9	0.00102	4	0.00285	5	9	7
				0.1813	8.04E-	0.3608	0.00092	34.6291	17.4033	1.98979
5	DMSO	6-3	25	5	05	5	3	7	5	9
				0.1791	0.00012	0.3550		35.0602	17.6896	1.98196
5	DMSO	6-3	80	2	2	1	0.0013	9	4	7
					9.05E-	0.3592		34.6196	17.4823	1.98026
5	DMSO	6-3	cool	0.1814	05	2	0.00115	3	2	5
					0.00013	0.3599		34.7153	17.4483	1.98960
2	DMF	6-2	25	0.1809	4	2	0.00274	1	2	8
				0.1778	4.28E-	0.3425				1.92632
2	DMF	6-2	80	1	04	2	0.0029	35.3186	18.3347	6
				0.1811	0.00015	0.3576		34.6712	17.5600	1.97443
2	DMF	6-2	Cool	3	3	3	0.00187	3	5	8
					9.62E-	0.3601		34.6769	17.4362	1.98879
5	DMF	6-4	25	0.1811	05	7	0.0014	7	1	1
					0.00012	0.3526			17.8060	1.97364
5	DMF	6-4	80	0.1787	1	9	0.00143	35.1427	1	3
				0.1812	7.39E-	0.3609	0.00060	34.6406		
5	DMF	6-4	Cool	9	05	9	6	3	17.3966	1.99123

Table 3. Contour and Kuhn lengths for fluorinated gelator

Conc	Solvent	Sample Code	т	Contour Length	Kuhn Length
2wt%	DMSO	G1	25C	58.3193	52.07
2wt%	DMSO	G1	80C	67.6354	48.3672
2wt%	DMSO	G1	cool	59.7336	51.7336
5wt%	DMSO	G2	25C	41.5922	59.6375
5wt%	DMSO	G2	80C	51.9515	49.4843
5wt%	DMSO	G2	cool	61.9873	40.7336
2wt%	DMF	G4	25C	39.6765	24.5881
2wt%	DMF	G4	80C	Structure	broken
2wt%	DMF	G4	cool	30.5202	20.7846
5wt%	DMF	G5	25C	40.3656	25.0502
5wt%	DMF	G5	80C	Structure	broken
5wt%	DMF	G5	cool	42.366	20.4802

Table 4. Contour and Kuhn lengths for non-fluorinated gelator

Conc	Solvent	Sample Code	т	Contour Length	Kuhn Length
2wt%	DMSO	Set 6-1	25C	37.4496	40.0577
2wt%	DMSO	Set 6-1	80C	27.5289	33.3963
2wt%	DMSO	Set 6-1	cool	40.754	20.6132
5wt%	DMSO	Set 6-3	25C	39.0356	38.1632
5wt%	DMSO	Set 6-3	80C	22.4024	38.8257
5wt%	DMSO	Set 6-3	cool	31.2717	36.0495
2wt%	DMF	Set 6-2	25C	20.2472	59.6474
2wt%	DMF	Set 6-2	80C	26.5034	40.7421
2wt%	DMF	Set 6-2	cool	26.1042	53.3169
5wt%	DMF	Set 6-4	25C	34.5525	35.72
5wt%	DMF	Set 6-4	80C	36.1135	33.9615
5wt%	DMF	Set 6-4	cool	34.3127	45.1583

Fluorinated Bis-urea gelator										
Solvent	Temp.	Conc.	Q range	Model	chi-sqrt	Block radius	Fractal dimesnsion	Correlation length		
DMSO	25 C	2 wt%	low q + high q	Smeared fractal	3.42713	6	2.94105	365.193		
DMSO	80 C	2 wt%	low q + high q	Smeared fractal	1.88824	10.3561	3.02439	530.544		
DMSO	low T	2 wt%	low q + high q	Smeared fractal	1.3574	9.68656	3.00927	523.894		
DMSO	25 C	2 wt%	low q	Smeared fractal	3.14173	5 (fixed)	3.14173	424.943		
DMSO	25 C	2 wt%	low q	Smeared fractal	3.13585	10 (fixed)	2.89229	425.884		
DMSO	80 C	2 wt%	low q	Smeared fractal	2.10664	5 (fixed)	3.0275	526.453		
DMSO	80 C	2 wt%	low q	Smeared fractal	2.10547	10 (fixed)	3.02713	526.556		
DMSO	low T	2 wt%	low q	Smeared fractal	1.44895	5 (fixed)	3.00764	526.745		
DMSO	low T	2 wt%	low q	Smeared fractal	1.44755	10 (fixed)	3.0073	526.796		
DMF	25 C	2 wt%	low q + high q	Smeared fractal	5.11616	7.3183	3.02342	230.947		
DMF	80 C	2 wt%	low q + high q	Power law + Schulz sphere	1.01882	Sphere R= 9.134				
DMF	low T	2 wt%	low q + high q	Smeared fractal	3.40445	6.75612	2.98904	372.0898		
DMF	25 C	2 wt%	low q	Smeared fractal	6.09121	8.13037	3.02298	231.209		
DMF	low T	2 wt%	low q	Smeared fractal	3.95102	6.38885	2.98551	376.773		
DMSO	25 C	5 wt%	low q + high q	Smeared fractal	3.27893	7.71927	2.91878	391.845		
DMSO	80 C	5 wt%	low q + high q	Smeared fractal	2.35082	11.529	3.02735	474.299		
DMSO	low T	5 wt%	low q + high q	Smeared fractal	1.8392	8.23741	2.9924	473.305		
DMF	25 C	5 wt%	low q + high q	Smeared fractal	5.28971	6.59769	3.00782	348.16		
DMF	80 C	5 wt%	low q + high q	Power law + Schulz sphere		Sphere R= 11				
DMF	low T	5 wt%	low q + high q	Smeared fractal	3.64164	6.45139	2.98929	387.368		
DMF	25 C	5 wt%	low q	Smeared fractal	5.39572	10.485	3.01219	340.802		
DMF	low T	5 wt%	low q	Smeared fractal	3.67546	6.98859	2.98648	392.123		
				Non-fluorinated	bis-urea g	elator				
DMSO	25 C	2 wt%	low q + high q	Smeared fractal	8.53837	4.62883	3.00192	4097.59		
DMSO	80 C	2 wt%	low q + high q	Smeared fractal	6.4655	6.4655	3.00286	4452.68		
DMSO	low T	2 wt%	low q	Smeared fractal	2.58891	4.4519	3.00016	7913.52		
DMF	25 C	2 wt%	low q + high q	Smeared fractal	7.66535	5.20312	3.00028	7304+/- 2216		
DMF	80 C	2 wt%	low q + high q	Smeared fractal	5.12525	9.26886	3.00074	3592+/-138		

Table 5. Bis-urea gelator results summary tables (Smeared fractal fit)

DMF	low T	2 wt%	low a + high a	Smeared fractal	8.26707	6.22962	2.99952	4516.8+/-806.459
DMF	25 C	2 wt%	low q	Smeared fractal	2.3147	5.47124	2.99974	8900+/-6705
DMF	80 C	2 wt%	low q	Smeared fractal	1.87498	9.50888	3.0005	6134.5+/-3357.4
DMF	low T	2 wt%	low q	Smeared fractal	1.9804	6.05469	2.99863	6345.85+/-2836.09
DMSO	25 C	5 wt%	low q + high q	Smeared fractal	15.0278	5.62584	3.00327	3031.83 +/- 338
DMSO	25 C	5 wt%	low q	Smeared fractal	3.69196	5.49399	3.00067	6682+/-3716
DMSO	80 C	5 wt%	low q + high q	Smeared fractal	13.4086	6.27239	3.00251	4285+/-561
DMSO	80 C	5 wt%	low q	Smeared fractal	3.41944	7.10657	3.00104	5862+/-2582
DMSO	low T	5 wt%	low q + high q	Smeared fractal	15.2136	5.90371	3.00318	2976+/-339
DMSO	low T	5 wt%	low q	Smeared fractal	3.50033	5.28089	3.00038	5949+/-2706
DMF	25 C	5 wt%	low q + high q	Smeared fractal	15.5471	4.95684	3.00231	2647 +/- 187
DMF	80 C	5 wt%	low q + high q	Smeared fractal	13.7637	6.27339	3.00204	3461.7 +/- 297
DMF	low T	5 wt%	low q + high q	Smeared fractal	15.7733	5.18659	3.00178	3132 +/- 379
DMF	25 C	5 wt%	low q	Smeared fractal	4.07359	4.65844	3.00027	9301 +/- 5575
DMF	80 C	5 wt%	low q	Smeared fractal	4.20391	6.83763	3.00074	6217 +/- 3241
DMF	low T	5 wt%	low q	Smeared fractal	3.85525	4.41458	2.99996	6705+/- 3688

Table 6. Bis-urea gelator results summary tables (Smeared fractal flexible cylinder fit)

	Fluorinated Bis-urea gelator												
Solvent	Temp.	Conc.	Q range	Model	Chi-sqrt	Fractal dimension	Correlation length	Contour Length	Kuhn Length	Cylinder radius			
			low q +	Smeared fractal									
DMSO	low T	2 wt%	high q	flexible cylinder	1.41656	3.01034	506.203	64.075	47.5284	44.4198			
				Smeared fractal									
DMSO	low T	2 wt%	low q	flexible cylinder	1.38348	3.01237	504.722	59.7336	51.7336	43.4084			
			low q +	Smeared fractal									
DMSO	80 C	2 wt%	high q	flexible cylinder	1.83254	3.03262	506.418	63.1647	48.547	43.0193			
DMSO	80 C	2 wt%	low q	Smeared fractal	1.97845	3.03286	505.25	67.6354	48.3672	45.6986			

			flexible cylinder						
		low q +	Smeared fractal						
25 C	2 wt%	high q	flexible cylinder	2.19098	2.76453	575.059	56.1255	5 52.3816	58.7316
			Smeared fractal						
25 C	2 wt%	low q	flexible cylinder	2.26072	2.75486	580.313	58.3193	<u>52.07</u>	61.3212
		low q +	Smeared fractal				30 5311	21.0536	28 7180
low T	2 wt%	high q	flexible cylinder	3.54843	2.95629	405.043	50.5511	21.0550	20./109
			Smeared fractal						
low T	2 wt%	low q	flexible cylinder	3.6342	2.94658	401.826	30.5202	2 20.7846	33.3175
		low q +	Smeared fractal						
25 C	2 wt%	high q	flexible cylinder	5.46498	3.00492	233.544	37.6413	3 21.2433	25.2056
			Smeared fractal						
25 C	2 wt%	low q	flexible cylinder	5.74992	2.96578	248.356	39.676	5 24.5881	35.6998
		low q +	Smeared fractal						
low T	5 wt%	high q	flexible cylinder	1.98962	2.97681	477.531	61.6077	43.2419	44.0413
			Smeared fractal						
low T	5 wt%	low q	flexible cylinder	1.72847	2.97439	479.286	61.9873	40.7336	43.8945
		low q +	Smeared fractal	2 0	2 22222	450.040	50 6606	40.0047	40.0005
80 C	5 wt%	high q	flexible cylinder	2.5758	3.03009	453.313	59.6636	48.6347	43.6925
00.0	Et0/	1	Smeared fractal	2 4 4 0 2 7	2.02504	456.250	E1 0E1E	40 40 42	45 4640
80 C	5 Wt%	low q	flexible cylinder	2.44927	3.02584	456.359	51.9515	49.4843	45.4618
25.0	E 11/10/	iow q +	Smeared Iractal	2 07412	2 01010	401 220	42 0 4 4		10 6100
25 C	5 W1%	nign q	Smoored fractal	3.07413	2.81818	491.238	42.944	00.5975	48.0188
25 C	5 wt%	low a	flevible cylinder	2 22015	2 75989	578 /6/	/11 5022	50 6375	50 2/77
250	J W1/0		Smeared fractal	2.52015	2.75505	578.404	41.5522	55.0575	55.2477
low T	5 wt%	high a	flexible cylinder	4 35702	2 97533	391 574	43 8413	20 5512	27 6937
	5 440,0	1161 9	Smeared fractal	1.55762	2.37333	331.371	13.0113	20.3312	27.0557
low T	5 wt%	low a	flexible cylinder	3.56248	2.96693	399.88	42,366	20.4802	30,7806
		low a +	Smeared fractal						
25 C	5 wt%	high a	flexible cylinder	6.17016	3.00663	332.712	39.9212	23.9149	27.4791
		0 1	Smeared fractal						
25 C	5 wt%	low q	flexible cylinder	5.09772	3.0111	338.097	40.3656	25.0502	30.5365
	25 C 25 C 10w T 10w T 25 C 25 C 10w T 80 C 80 C 80 C 25 C 25 C 10w T 10w T 10w T 10w T	25 C 2 wt% 25 C 2 wt% 25 C 2 wt% low T 2 wt% 25 C 2 wt% 25 C 2 wt% 25 C 2 wt% low T 5 wt% low T 5 wt% 80 C 5 wt% 80 C 5 wt% 25 C 5 wt% low T 5 wt% 25 C 5 wt%	25 C2 wt%low q + high q25 C2 wt%low q25 C2 wt%low q + high qlow T2 wt%low qlow T2 wt%low qlow T2 wt%low q25 C2 wt%low q25 C2 wt%low qlow T5 wt%low qlow q + low q +low q + low q + low q +25 C5 wt%low q	Iow q + bigh qflexible cylinder Smeared fractal25 C2 wt%low q + low q +flexible cylinder Smeared fractal25 C2 wt%low q +Smeared fractal flexible cylinderIow T2 wt%high qflexible cylinder Smeared fractalIow T2 wt%low q +Smeared fractal flexible cylinderIow T2 wt%low q +Smeared fractal flexible cylinderIow T2 wt%low q +flexible cylinder Smeared fractal25 C2 wt%low q +Smeared fractal flexible cylinder25 C2 wt%low q +Smeared fractal flexible cylinder25 C2 wt%low q +Smeared fractal flexible cylinder0w T5 wt%low q +Smeared fractal flexible cylinder Smeared fractal10w T5 wt%low qflexible cylinder Smeared fractal10w T5 wt%low qflexible cylinder Smeared fractal80 C5 wt%low qflexible cylinder Smeared fractal80 C5 wt%low qflexible cylinder Smeared fractal25 C5 wt%low qflexible cylinder Smeared fractal10w T5 wt%low qflexible cylinder <td>InterpretationInterpretationInterpretation25 C2 wt%high qSmeared fractal25 C2 wt%Iow qflexible cylinder2.1909825 C2 wt%Iow qflexible cylinder2.26072Iow T2 wt%high qflexible cylinder3.54843Iow T2 wt%Iow qflexible cylinder3.54843Iow T2 wt%Iow qflexible cylinder3.6342Iow T2 wt%Iow qflexible cylinder3.6342Iow T2 wt%Iow qflexible cylinder5.4649825 C2 wt%Iow qflexible cylinder5.7499225 C2 wt%Iow qflexible cylinder5.74992Iow T5 wt%Iow qflexible cylinder1.98962360 C5 wt%Iow qflexible cylinder1.72847Iow T5 wt%Iow qflexible cylinder2.575880 C5 wt%Iow qflexible cylinder2.575880 C5 wt%Iow qflexible cylinder3.0741325 C5 wt%Iow qflexible cylinder3.0741325 C5 wt%Iow qflexible cylinder3.56248Iow T5 wt%</td> <td>flexible cylinder$25 C$2 wt%high qflexible cylinder flexible cylinder2.190982.76453 Smeared fractal$25 C$2 wt%low qflexible cylinder2.260722.75486$25 C$2 wt%low qflexible cylinder3.548432.95629 Smeared fractal$10w T$2 wt%high qflexible cylinder3.63422.94658$10w T$2 wt%low qflexible cylinder3.63422.94658$10w T$2 wt%low qflexible cylinder5.464983.00492$25 C$2 wt%low qflexible cylinder5.464983.00492$25 C$2 wt%low qflexible cylinder5.749922.96578$25 C$2 wt%low qflexible cylinder1.989622.97681$25 C$2 wt%high qflexible cylinder1.728472.97439$10w T$5 wt%high qflexible cylinder1.728472.97439$10w q$ +Smeared fractalSmeared fractal3.03009$25 C$5 wt%low q +Smeared fractal3.074132.81818$25 C$5 wt%low q +Smeared fractal3.074132.81818$25 C$5 wt%low qflexible cylinder3.074132.81818$25 C$5 wt%low qflexible cylinder3.074132.81818$25 C$5 wt%low qflexible cylinder3.562482.96693$10w T$5 wt%high qflexible cylinder<</br></td> <td>flexible cylinder25 C2 wt%high qflexible cylinder2.190982.76453575.05925 C2 wt%low qflexible cylinder2.260722.75486580.31325 C2 wt%high qflexible cylinder3.548432.95629405.043low T2 wt%high qflexible cylinder3.63422.94658401.826low T2 wt%low qflexible cylinder3.63422.94658401.826low T2 wt%low qflexible cylinder5.464983.00492233.54425 C2 wt%high qflexible cylinder5.749922.96578248.35625 C2 wt%low q +Smeared fractalsmeared fractal1.989622.97681477.53125 C2 wt%high qflexible cylinder1.728472.97439479.286low T5 wt%high qflexible cylinder1.728472.97439479.286low T5 wt%low qflexible cylinder2.449273.02584456.359low T5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder3.074132.81818491.23880 C5 wt%low qflexible cylinder3.074132.818</td> <td>flexible cylinder iow q + Smeared fractal 25 C 2 wt% high q flexible cylinder 2.19098 2.76453 575.059 56.1255 25 C 2 wt% low q + Smeared fractal 30.5311 25 C 2 wt% low q + Smeared fractal 30.5311 low T 2 wt% high q flexible cylinder 3.54843 2.95629 405.043 30.5311 low T 2 wt% low q + Smeared fractal 3.54843 2.95629 405.043 30.5311 low T 2 wt% low q + Smeared fractal 3.6342 2.94658 401.826 30.5203 25 C 2 wt% low q + Smeared fractal 3.00492 233.544 37.6413 25 C 2 wt% high q flexible cylinder 5.46498 3.00492 248.356 39.6763 25 C 2 wt% high q flexible cylinder 1.98962 2.97681 477.531 61.6077 10w T 5 wt% high q flexible cy</td> <td>Interplane</td>	InterpretationInterpretationInterpretation25 C2 wt%high qSmeared fractal25 C2 wt%Iow qflexible cylinder2.1909825 C2 wt%Iow qflexible cylinder2.26072Iow T2 wt%high qflexible cylinder3.54843Iow T2 wt%Iow qflexible cylinder3.54843Iow T2 wt%Iow qflexible cylinder3.6342Iow T2 wt%Iow qflexible cylinder3.6342Iow T2 wt%Iow qflexible cylinder5.4649825 C2 wt%Iow qflexible cylinder5.7499225 C2 wt%Iow qflexible cylinder5.74992Iow T5 wt%Iow qflexible cylinder1.98962360 C5 wt%Iow qflexible cylinder1.72847Iow T5 wt%Iow qflexible cylinder2.575880 C5 wt%Iow qflexible cylinder2.575880 C5 wt%Iow qflexible cylinder3.0741325 C5 wt%Iow qflexible cylinder3.0741325 C5 wt%Iow qflexible cylinder3.56248Iow T5 wt%	flexible cylinder $25 C$ 2 wt%high qflexible cylinder flexible cylinder2.190982.76453 	flexible cylinder25 C2 wt%high qflexible cylinder2.190982.76453575.05925 C2 wt%low qflexible cylinder2.260722.75486580.31325 C2 wt%high qflexible cylinder3.548432.95629405.043low T2 wt%high qflexible cylinder3.63422.94658401.826low T2 wt%low qflexible cylinder3.63422.94658401.826low T2 wt%low qflexible cylinder5.464983.00492233.54425 C2 wt%high qflexible cylinder5.749922.96578248.35625 C2 wt%low q +Smeared fractalsmeared fractal1.989622.97681477.53125 C2 wt%high qflexible cylinder1.728472.97439479.286low T5 wt%high qflexible cylinder1.728472.97439479.286low T5 wt%low qflexible cylinder2.449273.02584456.359low T5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder2.320152.75989578.46480 C5 wt%low qflexible cylinder3.074132.81818491.23880 C5 wt%low qflexible cylinder3.074132.818	flexible cylinder iow q + Smeared fractal 25 C 2 wt% high q flexible cylinder 2.19098 2.76453 575.059 56.1255 25 C 2 wt% low q + Smeared fractal 30.5311 25 C 2 wt% low q + Smeared fractal 30.5311 low T 2 wt% high q flexible cylinder 3.54843 2.95629 405.043 30.5311 low T 2 wt% low q + Smeared fractal 3.54843 2.95629 405.043 30.5311 low T 2 wt% low q + Smeared fractal 3.6342 2.94658 401.826 30.5203 25 C 2 wt% low q + Smeared fractal 3.00492 233.544 37.6413 25 C 2 wt% high q flexible cylinder 5.46498 3.00492 248.356 39.6763 25 C 2 wt% high q flexible cylinder 1.98962 2.97681 477.531 61.6077 10w T 5 wt% high q flexible cy	Interplane

						is unca genai				
			low q +	Smeared fractal						
DMSO	low T	2 wt%	high q	flexible cylinder	8.24875	2.99797	3262.2	40.6701	20.8082	52.4526
				Smeared fractal						
DMSO	low T	2 wt%	low q	flexible cylinder	2.71297	2.99652	3469.82	40.754	20.6132	51.6665
			low q +	Smeared fractal						
DMSO	80 C	2 wt%	high q	flexible cylinder	7.3467	3.00797	1805.66	41.2649	19.3548	36.0487
				Smeared fractal						
DMSO	80 C	2 wt%	low q	flexible cylinder	3.96653	3.00338	3296.09	27.5289	33.3963	52.3272
			low q +	Smeared fractal						
DMSO	25 C	2 wt%	high q	flexible cylinder	8.84205	2.99955	2735.25	39.8083	20.1013	49.891
				Smeared fractal						
DMSO	25 C	2 wt%	low q	flexible cylinder	3.7721	3.00161	1650.84	37.4496	40.0577	54.2296
			low q +	Smeared fractal						
DMF	low T	2 wt%	high q	flexible cylinder	8.94898	2.99386	1860.52	25.9101	53.6934	49.3846
				Smeared fractal						
DMF	low T	2 wt%	low q	flexible cylinder	2.41449	2.99359	1810.63	26.1042	53.3169	48.9343
			low q +	Smeared fractal						
DMF	80 C	2 wt%	high q	flexible cylinder	5.58329	3.00613	1179.45	26.2905	41.7198	6.47832
				Smeared fractal						
DMF	80 C	2 wt%	low q	flexible cylinder	2.31823	3.00211	1918.39	26.5034	40.7421	5.77345
			low q +	Smeared fractal						
DMF	25 C	2 wt%	high q	flexible cylinder	8.31272	2.9965	2072.42	20.1974	59.7676	50.5821
				Smeared fractal						
DMF	25 C	2 wt%	low q	flexible cylinder	2.69336	2.99635	2139.47	20.2472	59.6474	51.0068
			low q +	Smeared fractal						
DMSO	low T	5 wt%	high q	flexible cylinder	15.5828	2.99741	2161+/-72	31.1435	36.4921	53.7741
				Smeared fractal						
DMSO	low T	5 wt%	low q	flexible cylinder	3.80244	2.99876	2305+/-67	31.2717	36.0495	52.0105
			low q +	Smeared fractal						
DMSO	80 C	5 wt%	high q	flexible cylinder	14.2171	3.00077	2893+/-102	22.493	38.8147	49.7568
DMSO	80 C	5 wt%	low q	Smeared fractal	3.6249	3.00078	2972.16+/-	22.4024	38.8257	49.7609

Non-fluorniated bis urea gelator

				flexible cylinder			102			
			low q +	Smeared fractal						
DMSO	25 C	5 wt%	high q	flexible cylinder	15.442	2.99934	1897.85	38.9789	38.6071	57.5839
				Smeared fractal						
DMSO	25 C	5 wt%	low q	flexible cylinder	4.24116	3.00052	1871.51	39.0356	38.1632	55.5676
			low q +	Smeared fractal						
DMF	low T	5 wt%	high q	flexible cylinder	16.4212	2.99989	1380 +/- 23	33.3266	46.5913	50.7789
				Smeared fractal						
DMF	low T	5 wt%	low q	flexible cylinder	4.92994	2.99972	1405 +/- 23	34.3127	45.1583	50.7005
			low q +	Smeared fractal						
DMF	80 C	5 wt%	high q	flexible cylinder	15.719	3.00506	1585 +/- 27	36.05565	35.7901	46.1284
				Smeared fractal			1727.71 +/-			
DMF	80 C	5 wt%	low q	flexible cylinder	4.894	3.00383	32	36.1135	33.9615	47.7223
			low q +	Smeared fractal						
DMF	25 C	5 wt%	high q	flexible cylinder	16.3639	3.00126	1399.6 +/- 18	34.0026	35.946	47.6333
				Smeared fractal						
DMF	25 C	5 wt%	low q	flexible cylinder	5.40287	3.00127	1280 +/- 16	34.5525	35.72	46.5616