Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2015

Exploiting non-equilibrium phase separation for self-assembly
Supporting Information

Michael Griinwald, Simon Tricard, George M. Whitesides, and Phillip L. Geissler
Email: michael.gruenwald@utah.edu; simon.tricard@insa-toulouse.fr

1 Correspondence between mechanical agitation and external
forces

In our molecular dynamics simulations of two-dimensional systems, we use an external force F(¢)
that directly acts on particles in the simulation box. The effects of mechanical agitation on our
experimental system of plastic solids is more complicated than that. Under certain assumptions,
however, it can be described as an external force akin to the one used in our simulations. To
establish this connection, we work in the frame of reference of the agitated board. Here, the
motion of a single, isolated bead in reaction to mechanical agitation can be interpreted as
originating from a force G(t). (Since star and wedges do not move with respect to the board
unless hit by other shapes, they do not experience external forces in this frame of reference.)
We can calculate G(t) from knowledge of the position of the board as a function of time, R(t).
For simplicity, we assume a circular periodic motion with components R;(t) = R cos(wt) and
R, = Rsin(wt), where R is the radius of the orbital motion, and w is the period. Assuming
that beads have negligible friction with the board, the motion of a single bead in response
to the agitation is —R(t). The corresponding force is given by G.(t) = mRw?cos(wt) and
Gy(t) = mRw?sin(wt), where m is the particle mass. The effects of circular periodic agitation
can therefore be described as an external periodic force acting on the beads, with identical
frequency and an effective amplitude of mRw?. Note that the strength of the effective force
depends on the frequency of agitation. In fact, recent experiments using a similar agitation device
have shown that the tendency of shapes to demix and aggregate increases when the frequency
of the agitation is increased [1, 2, 3]. These results agree well with the present simulations that
show an increase in effective pressure and stronger effective attractions between particles with
increasing amplitude of the external driving force.

2 Assembly of star and wedges at constant pressure

To probe the assembly behavior of the star-and-wedges at equilibrium conditions, we performed
constant pressure Monte Carlo simulations with standard volume updates [4]. The simulated
systems comprised the seven polyhedral shapes (with size mismatch between wedges and pockets
of the star) and 439 ideal gas particles of diameter o that serve as a pressure bath. Ideal gas
particles do not have any mutual interactions but exclude area in interactions with star and
wedges. These interactions favor demixing of ideal gas particles and star/wedges at high density
or pressure, as illustrated in Supporting Figure la. Measures of the degree of aggregation and
assembly increase monotonically with pressure.
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SUPPORTING FIG. 1: (a) Average values of aggregated wedges n, and assembled wedges ng
as a function of pressure in Monte Carlo simulations using ideal gas particles as a pressure bath.
Snapshots show typical configurations at low and high pressure. (b) Area S(a) (black circles)
occupied by a cluster of 100 ideal gas particles in a bath of driven hard discs, as a function
of amplitude a. Red squares indicate the corresponding effective pressure P(a)/kpT calculated
from the ideal gas equation of state. Snapshots show typical configurations at two different
amplitudes. (Ideal gas particles are colored yellow.)

3 Pressure effected by phase segregation

We define the effective (surface) pressure that is exerted by a driven group of particles on
an undriven, segregated group of particles by measuring the area occupied by a collection of
segregated ideal gas particles. To this end, we performed Monte Carlo simulations of a system
of 399 hard discs and 100 ideal gas particles. Discs undergo the biased ”shaking” dynamics
described in the main manuscript with 7 = 1200. (The size of the simulation box was chosen to
match the area accessible to shaking discs to that in simulations of the star and wedges system
at a packing fraction of 0.65.) For amplitudes larger than approximately a = 0.05, ideal gas
particles form a segregated dense cluster. To measure the area S occupied by the cluster, we
define a grid of square cells with edge length 1.0420; S is defined as the total area of all cells
that are occupied by at least one ideal gas particle. We then define the effective pressure using



the ideal gas equation of state, P/kgT = N/S. Time averages of area S(a) and pressure P(a)
are plotted as a function of the amplitude of shaking in Supporting Figure 1b.
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