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1 Equilibrium Stretch Ratio

The initial equilibrium void size, A,; = A/Ag may be calculated
from P, + P.js = 0 corresponding to the equilibration of surface
tension and elastic restoring force. Since P = —dF/dV, non-
dimensionalizing F (free energy) by uAS and V (volume) by A(3)
allows us to write
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The expression for the surface free energy is Fj,/ (uAa) =
47(a/Ag)*(y/uAp). The strain energy in the elastomer F,;,; is cal-
culated as in Zhu et al. !

o () o) 7 e

where W is the free energy function for the material model cho-
sen. For a neo-Hookean solid, substituting the derivatives of the
expressions for the free energy into Eq. S1 and noting that we are
solving for what we are calling the initial void size A, yields
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The second term in this equation can be re-written as 4177;0 ( AAO)
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yielding an equation that can be solved for the equilibrium stretch
ratio A,y = A/Ag as a function of the parameter y/uA.
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Aeq is the real solution between zero and one. In the case of the
modified Yeoh model (Eq. 7) the expression is non-linear (involv-
ing logA.,).

Accounting for the initial equilibrium stretch ratio enables
replication of the distinctive pressure versus applied compression
observed experimentally (Fig. 1). In other words, relative pres-
sure at the onset of compression is zero as in Figure S1. Addi-
tionally, bubble stretch values at cavitation are greater than one
corresponding to bubble growth prior to cavitation as seen exper-
imentally.
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Fig. S1 As the syringe plunger is depressed, the compression fraction
CF defined as 1—V,/V, increases. The increasing compression in the
chamber leads to an increase in pressure. This figure illustrates the
pressure-versus compression response for a gas mediated cavitation.
(Voo =1mL, u =250 Pa, A =25 um, y= 27.7 mN/m, neo-Hookean)
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2 Yeoh Constitutive Response

The modified Yeoh model (Eq. 7) was used to approximate strain
hardening while still resulting in neo-Hookean behavior in the
limit of zero strain hardening (C3/u — 0). As is apparent in Fig-
ure S2, increased strain hardening is observed for increased in
C3/u although these are accompanied by a slight increase in stiff-
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Fig. S2 Pressure-stretch response for a spherical void within an infinite
elastic solid following the modified Yeoh constitutive model (Eq. 7).
Decreasing saturation corresponds to decreasing stretch at hardening
as determined by an increase in C3/u. (y/uA = 3)

ness at small strain. This increase in small stretch stiffness has
little effect on P. from fracture and a relatively small contribution
to G, making it a useful constitutive relation due to the closed
form for F,,, that can be achieved with this relation as compared
to, for example, Gent’s.
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3 Parametric Variation of Mechanism Maps
in Both Gas and Incompressible Fluid
Limits

Similar to Figure 3, increasing applied displacement can lead to
an elastic cavitation or fracture event (Figure S3). Repeating this
calculation over a range of parameters results in a mechanism
map similar to Figure 5, only in this case we assume an incom-
pressible fluid as the pressurizing liquid and a linear system com-
pliance k to give Figure S4 for a neo-Hookean solid. Note that
there is no empty space when an incompressible fluid is used;
it is assumed that the applied volume V,,, can always be large
enough to cause the spring to reach P, due to either elastic cavi-
tation or fracture.

As discussed, the inseparability of two independent length
scales, the needle size, A, and the elastocapillary length y/u ne-
cessitate the generation of a mechanism map for a series of one
length scale by holding the other length scale constant. Figures S5
and S6 demonstrate the variation of the relationship between in-
stability mechanisms for the gas and incompressible fluid limits,
respectively.

Briefly, system compliance in the case of the incompressible
fluid limit was measured by blocking the needle exit and load-
ing the syringe/pressure sensor by displacing the syringe plunger
using a syringe pump. Results of one of these experiments along
with the linear fit of the observed slope are shown in Figure S7.
This fit value is shown via a gray line in Figs. S4 and S6.
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Fig. S3 a) Pressure-stretch response for a neo-Hookean void within an infinite elastic solid (dashed line). (A =50 um, u = 250 Pa, y = 27.7 mN/m)
Overlays of decreasing saturation correspond to increasing displaced volume V,,,, (i.e., depressing the syringe) for compression levels reaching
single, absolute, and meta- stability limits. (k = 1.1 kPa/um, Py =1 atm) b) Free energy-stretch response for the combined void/syringe system plotted
in a) illustrating the onset of absolute and meta-stability. (AF,; = Fio(A) — F» (1)) ¢) Schematic illustrating the applied or displaced volume V.
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Fig. S4 Map detailing the mechanism leading to observation of a P.
during a CR experiment under the incompressible fluid assumption. ‘x’
corresponds to fracture, ‘@’ to cavitation, ‘Il to cavitation followed by
fracture, and "%’ to a negligible pressure drop during cavitation such that
P. is governed by fracture. The magnitude of P, is shown via color
gradient corresponding to the colorbar on the right. This map was
generated assuming a constant needle radius of 50 um, G. = 20y,

Y =27.7 mN/m (air-2-ethyl hexanol interface), and Py = 1 atm for a
neo-Hookean solid. (Gray line corresponds to k = 1.1 kPa/uL.)
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Fig. S5 Series of mechanism maps for the pressurizing gas case demonstrating length scale dependence for either fixed needle size (a-c) or fixed

27.7 mN/m (air-2-ethyl hexanol interface),

elastocapillary length, fixed u, (d-f). The gray line in each figure corresponds to V.o = 1mL. (G. =20y, y

0.01.)

1 for a modified Yeoh solid with C3/u

and Py
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Fig. S6 Series of mechanism maps for the incompressible fluid/ finite system compliance case demonstrating length scale dependence for either

fixed needle size (a-c) or fixed elastocapillary length, fixed u, (d-f). The gray line corresponds to k = 1.1 kPa/uL. (G. =20y, y

hexanol interface), and Py

0.01.)

1 for a modified Yeoh solid with C3/u
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Fig. S7 Pressure increase with applied volume V,,,, for the closed
syringe/pressure sensor system over a range of pressures exceeding
those attained during triblock CR experiments.

4 Triblock Co-Polymer Gels

Triblock gels were prepared as a 7 wt% solution of PMMA-PnBA-
PMMA with block lengths of 25, 116, and 25 kg/mol (Kuraray)
dissolved in 2-ethyl-1-hexanol. The solution was covered and
heated to 70°C for at least 1 hour (longer for the initial prepa-
ration) prior to allowing the solution to cool at room temperature
(~15 mL within a 20 mL glass vial). Samples were then brought
up to temperature in a water bath monitored by a thermometer
and allowed to equilibrate for at least 30 minutes. Each cavitation
experiment was performed with the needle embedded approxi-
mately 2 cm below the sample surface as estimated by a ruler. A
portion of the syringe was filled with water, leaving the needle
and any remaining bubbles as the only air in the system. A volu-
metric flow rate of 50 uL/min was used to pressurize the sample
as controlled with a syringe pump. The data gathered in this way
are shown in Figure S8.
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Fig. S8 Absolute P. values for 7 wt% PMMA-PnBA-PMMA triblock gels
using a 30 g stainless steel needle, ID: 106 um, OD: 266 um.

Rheological data (TA Instruments) was gathered using

This journal is © The Royal Society of Chemistry [year]

standard-size double cylinders in which the liquid solution
was poured into the pre-heated, temperature controlled sample
holder. Data, shown in Figure S9, were taken at varying frequen-
cies and an oscillation strain of 5 x 1077 .
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Fig. S9 Shear rheology data temperature sweeps for 7
wt%PMMA-PnBA-PMMA triblock gels at a range of .

5 Power Law Scaling of G,

These scaling relation discussed here are direct extensions of
those made by Kundu and Crosby?2 and apply to cross-linked gel
systems. From classical gel mechanics, p ~ b’g—m where £ is Boltz-
man’s constant, T is the temperature, b is the Kuhn length, N
is the number of chain segments, and ¢ is the volume fraction
of polymer. Following their arguments based on the Lake and
Thomas? model for strain energy, G, for a good solvent scales as
G. ~UN'/2¢7/8 /b2, For the PAAm gels characterized, contact me-
chanics found that u ~ ¢%3. Substituting this into the expression
for u, one obtains N ~ ¢ '3, which when substituted back into
the expression for u yields u ~ ¢23. Similarly substituting N into
G, results in G. ~ ¢%-?25. Combining these two dependences on
volume fraction ¢ results in a power dependence:

G, ~ ¢0.098_ (S5)

Figure 7 demonstrates the effect of G, scaling and strain hard-
ening on P, predictions for the case of the gas with a fixed nee-
dle radius. Similar behavior is observed when the elastocapillary
length/u is held constant as demonstrated in Figure S10 for an
identical set of parameters.

6 Modulus and Fracture Energy Compar-
isons to Model Predictions

To determine the percent error of the cavitation equation predic-
tions for modulus g4y, values were compared to y obtained from
shear rheology data at a frequency of 0.1 rad/s or less (triblocks
and HSA organogels) or from contact mechanics (PAAm). The
expression, whose results are plotted in Figure S11a is:

%ErT = (S6)

Heav — H
u
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Fig. S10 Normalized P. values predicted for varying constitutive behavior and G. for a parameter series at constant modulus (varying needle radius).
The cavitation equation (Eq. 5) is the black solid curve in both plots. a) Effect of increasing strain-hardening corresponding to an increase in C3/ .
Light and dark blue curve illustrates associated effect of increases in G, (increased P.) combined with strain hardening. (u =500 kPa, V.o =1 mL, y=
27.7 mN/m) b) Predictions after incorporation of the power law dependence for G, (Eq. 8). In contrast to Figure 7b, increases in o tend to shift the P.
within the fracture regime only slightly. Much larger increases in P. are observed with increases in . When u is held constant, as in these plots,
increases in B do not affect the slope within the fracture regime. (1 =500 kPa, Vo = 1 mL, y=27.7 mN/m, C3/u = 0.01)
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Fig. S11 a) Percent error (Eqg. S6) in u as predicted by the cavitation equation (Eq. 5) and compared to u obtained using more standard techniques.
b)-c) G. (open symbols, Eq. 8) and G.;;, (closed symbols, Eq. 9) as a function of y/uA expressed relative to surface energy (b) and with units (c). The
former is included in order to show fracture energy values relative to the minimum energy associated with the creation of two new surfaces at the tip of

a crack, 2y.
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