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Dynamic force quadratures

We have previously introduced a method [1] based on Intermodulation AFM
(ImAFM) [2, 3] to rapidly measure the amplitude dependence of the tip-surface
force quadratures at each pixel of an image while scanning at normal speed for
dynamic AFM (1 line per second, 256 pixels per line). Here we recapitulate the
basic ideas behind the force quadratures.

A cantilever freely oscillating far from a surface has a linear dynamics which
is most easily described in the frequency domain,

d̂(ω) = χ̂(ω)F̂ (ω). (S1)

The hat denotes a frequency-dependent complex number, so that Eq. (S1) is
actually two linear equations relating the Fourier cosine (real) and sine (imag-

inary) coefficients of the deflection d̂ and the force F̂ at each frequency ω. For
micro-cantilevers operating in air or vacuum, the linear response function χ̂(ω)
of each eigenmode has the form of a simple harmonic oscillator,

χ̂(ω) =
1

k

(
1− ω2

ω2
0

+ i
ω

ω0Q

)−1

(S2)

where ω0 =
√

k
m and Q = ω0

γ are the resonance frequency and quality factor,

related to the modal mass m, stiffness k and half-width of the resonance γ.
For the fundamental bending eigenmode there exists a good method to cal-

ibrate the three constants describing the response function [4, 5, 6]. One can
then determine tip surface force by monitoring the steady-state response of the
eigenmode to the total external force,

F (t) = FTS(t) + FD(t) (S3)

where FD(t) is a periodic driving force. Eq.(S1) can be solved for the Fourier
coefficients of the tip-surface force,

F̂TS = χ̂−1(d̂− d̂free) (S4)
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where the free response spectrum d̂free = χ̂F̂D is measured by retracting the
probe well away from the surface where FTS = 0. Thus we determine the tip-
surface force, separating it from the inertial and damping force associated with
the motion of the cantilever body.

A stiff cantilever oscillating in air has a high quality factor resonance and
χ̂(ω) is sharply peaked near ω = ω0. High Q means that the cantilever response
is greatly enhanced for Fourier components of the tip-surface force near the
resonant frequency. Measuring this response as a dense frequency comb with
spacing ∆ω << ω0 enables a description of the motion with two well separated
time scales: a fast time scale corresponding to period of cantilever oscillation
T = 2π/ω0, and a slow time scale corresponding to the period of the entire
motion Tm = 2π/∆ω. For each fast period, with nearly constant amplitude A,
we extract the force quadratures which are Fourier coefficients of the tip-surface
force, or integrals of the tip-surface force over a single oscillation cycle where
the tip motion has zero phase[1].

FI =
1

T

∫ T

0

FTS(t) cos(ω0t)dt (S5)

FQ =
1

T

∫ T

0

FTS(t) sin(ω0t)dt (S6)

z(t) = h+A cos(ω0t) (S7)

In the frequency domain we write,

F̂TS(ω0) = FI(A) + iFQ(A) (S8)

d̂(ω0) = A+ i0. (S9)

From the measured motion we can calculate the phase rotation required to
enforce Eq. S9. Applying this rotation to the Fourier coefficients F̂TS(ω0)
determined from Eq. S4, we get the force quadratures [7, 8, 9]. The method
extracts two curves at each pixel, FI(A) and FQ(A). Here we note that the
oscillation frequency in Eqs. S5-S7 is not necessarily the resonance frequency
ω0. However, to achieve large SNR at many frequencies in the response comb
one is limited to a ’carrier frequency’ close to resonance. A slight detuning of
this carrier frequency results in an additional overall phase factor in the complex
envelope functions of both force and motion. This phase factor disappears when
the Force quadratures are defined with respect to the phase of the tip motion[9].
We also note that FI is proportional to an instantaneous oscillation ’frequency
shift’ [7], an interpretation used in the context of Frequency Modulation AFM
(FM-AFM) [10] where frequency shift is measured with a phase-locked-loop.

Moving surface model

Consider the tip oscillating in close proximity to a surface. We assume that
the tip is rigid in comparison with the soft sample, so that the interaction force
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does not cause any deformation of the tip. At any given point x, y in the scan,
the vertical position if the tip z(t) and that of the surface zs(t) may be moving
in the inertial reference frame in which the bulk of the sample is at rest. We
treat the surface forces with a linear approximation by introducing a coordinate
ds = zs − z0, which is an effective deflection of the surface from its equilibrium
position (see fig. 1 of main paper). Let us first consider a model that includes
the inertia associated with the moving surface.
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k
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ks
FTS(s, ṡ) , (S11)

Note that positive cantilever deflection d and surface deflection ds are defined
in the same direction, away from the surface. The cantilever forces (Eq. S10)
are coupled to the surface forces (Eq. S11) via the nonlinear interaction force
FTS(s, ṡ) which is a function of their separation s = z− zs = (h− z0) + (d−ds).

In this simplified model both the cantilever and surface are described as
simple harmonic oscillators. The cantilever has well-defined eigenmodes and
our model gives an excellent description of the cantilever dynamics in the ex-
periment, where motion is confined to a narrow frequency band around the
fundamental bending mode. On the other hand, the infinite surface has a con-
tinuum of modes which are surface waves of different frequency and wavelength,
and this simple model describes only a single surface mode. We may estimate
a characteristic frequency of surface oscillation ωs by considering the dispersion
relations for surface waves that might be excited by the periodic driving force
FD(t) acting through the nonlinear interaction FTS(s, ṡ).

Figure S1 shows the expected frequency of two types of surface waves for
a range of materials, over the region of expected wavelength. We expect the
lateral extent of surface deformation to be not too much smaller than or larger
than the tip radius, of order 10-20 nm. In this wavelength region the frequency
of surface waves is 2 or 3 orders of magnitude larger than the frequency of the
driving force, the later being close to the cantilever resonance frequency, 100
kHz to 2 MHz depending on the cantilever used. Thus, the finite response time
of the surface that we observe in the experiment cannot be due to the inertia of
the displaced surface (i.e. 1/ωs is too small), and therefore must be the result
of its viscosity. We conclude that the surface dynamics is over-damped and we
may neglect the first term in the right hand side of Eq.S11, bringing us to the
model
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where all forces are now normalized by the cantilever stiffness.
Nevertheless, a strongly nonlinear interaction FTS(s, ṡ) may result in fre-

quency components of the force at very high harmonics of the drive frequency,
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Supplementary Figure S1: Dispersion of surface waves. Frequency vs. wave-
length for capilary waves on the surface of a liquid, depending on the density ρ
and surface energy (surface tension) σ, and for Rayleigh waves on the surface
of an elastic solid, depending on the density and shear modulus G. Plots are
shown for approximate values of the materials indicated.

which could excite surface waves. If the surface waves do not reflect from a
boundary they will appear to the cantilever as additional radiation damping.
An in-homogeneous surface could exhibit localized surface modes, or standing-
wave surface oscillations, but to our knowledge no evidence of such surface
oscillations has been shown with dynamic AFM experiments.

Simulations

The system is driven by an oscillatory force with two drive tones

FD =
k

Q
(d1 cosω1t+ d2 cosω2t) . (S14)

where d1 and d2 are the free amplitudes of the oscillation when the cantilever is
driven without the tip-surface interaction. The drive frequencies ω1,2 are chosen
such that they satisfy

ω1,2 = 2πm1,2∆f , (S15)

∆f =
fs
n
, (S16)
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where n, m1,2 are integers and fs is the sampling frequency. We numerically
integrate the system using CVODE [11], where the disconunity at s = 0 is
properly treated using discrete event detection.

The integrator gives output at discrete time steps tn = n∆t = n/fs. Taking
the discrete Fourier transform of the motion we obtain the cantilever spectrum,

d̂k(k∆ω) = DFT [dn(n∆t)] (S17)

including all intermodulation products of the two drive frequencies. Due to the
large quality factor of the cantilever resonance Q, response in a narrow band
around the resonance frequency dominates the cantilever motion. Taking only
this response, we determine the amplitude dependent force quadratures [1].

Additional Results

Figure S2 displays analysis of a blend of polystyerene (PS) and polydimethyl-
siloxane (PDMS). The AFM height image h(x, y) is shown for several different
feedback set-point values, which was changed during the scan. The feedback
adjusts h to keep the response amplitude at one of the two drive tones at a
set-point value S = |d̂(ω1)|/|d̂free(ω1)|. Figure S2a and S2b shows the conserva-
tive and dissipative force quadratures FI(A) and FQ(A) respectively, measured
at the pixels marked with an × in the corresponding color. The double-curves
show both increasing and decreasing oscillation amplitude.

The overall surface height, and the height difference between the two visible
domains, depends strongly on the set-point. At lower S both FI and FQ are
non-zero down to the lowest oscillation amplitude A (yellow and green curves
in figs. S2a and S2b). For S < 0.7 the tip is always interacting with the surface,
experiencing a dominantly repulsive force (FI < 0) that is more viscous than
elastic. We conclude that the tip oscillates in continuous contact with a very
soft, liquid-like PDMS surface layer. At S = 0.9 the tip begins to oscillate in and
out of contact with this liquid-like layer, and a characteristic hysteresis in both
FI(A) and FQ(A) is observed. The shape of these curves, with a positive FI that
is nearly independent of amplitude, has been observed in many experiments on
soft, liquid-like surfaces.

Figures S3 and S4 display the analysis of a blend of Polystyrene (PS) and
Polyolefin Elastomer (ethylene-octene copolymer, LDPE), spin-cast onto a sil-
icon substrate (Bruker, HarmoniX test sample). This sample has faster re-
laxation time than the other samples, and hysteresis in the FI(A) and FQ(A)
curves is not observed with AFM cantilevers having resonance frequencies of
only 300 kHz. The measurements shown here used a shorter, stiffer cantilever
(150 N/m) with a much higher resonance frequency (f0 =1.9 MHz). Good
agreement between simulation and experiment can be found by adjusting the
model parameters, shown in Table S1. Note that on the LDPE region the ap-
parent DMT modulus E and adhesion force (depth of force minimum) both
decrease slightly toward the center of the LDPE region. These observations
point to difficulties in applying the DMT model for the interaction Fcon(s), as
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Color surface
stiffness

surface
damping

interaction
damping

Reduced
modulus

Adhesion
Force

working
distance

PDMS
(fig.S2)

ks [N/m] ηs [mg/s] ηi [mg/s] E∗ [MPa] Fmin[nN] h− z0[nm]

red 0.026 .071 .028 0.6 1.3 28.0
cyan 0.026 .071 .028 0.6 1.3 13.0
green 0.026 .071 .028 0.6 1.3 10.0
yellow 0.026 .071 .028 0.6 1.3 -50.0

LDPE
(fig.S3)

ks [N/m] ηs [mg/s] ηi [mg/s] E [MPa] Fmin[nN] h − z0
[nm]

red 0.350 18 0.14 200.0 6.0 11.5
cyan 0.350 18 0.14 180.0 5.5 10.5
green 0.350 18 0.14 160.0 5.0 9.5
yellow 0.350 18 0.14 140.0 4.5 8.5

PS
(fig.S4)

ks [N/m] ηs [mg/s] ηi [mg/s] E [MPa] Fmin[nN] h − z0
[nm]

red 1.500 6.3 0.25 2000.0 9.0 14.0
cyan 1.500 6.3 0.25 2000.0 9.0 12.5
green 1.500 6.3 0.25 2000.0 9.0 11.0
yellow 1.500 6.3 0.25 2000.0 9.0 9.5

Table S1: The model parameter values used for the simulated curves in figs. S2,
S3 and S4). The DMT model contains two parameters that were fixed for the
simulation: the inter-atomic spacing a0 =0.3 nm and the tip radius R =10nm.
The cantilever eigenmode parameters were set to the values measured during
calibration and the drive frequencies were those used in the experiments. For
LDPE and PS: k = 150. N/m , Q = 693. , f0 = 1.904 MHz and drive frequencies
f1 = 1.9025 MHz, f2 = 1.9050 MHz. For PDMS: k = 28.8 N/m, Q = 428,
f0 = 324.01 kHz and drive frequencies f1 = 323.75 kHz, f2 = 324.25 kHz. Both
experimental and simulated curves FI(A) and FQ(A) were derived from analysis
of 30 intermodulation products near resonance.

well as the simplification of treating the surface forces as linear functions of a
single degree of freedom ds and its associated velocity ḋs. Nevertheless, we see
how this model captures the basic physics of the interaction and dynamics of
the surface and nicely reproduces the hysteresis in the force quadrature curves.
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Supplementary Figure S2: The height image and the phase image at the first
drive frequency of ImAFM, for a blend of PS and PDMS measured at different
feedback set-points heights, S. a) and b) show experimental curves FI(A) and
FQ(A) at 4 pixels marked in the images with an × in the corresponding color.
Curves are offset and dashed lines indicates zero force. c) and d) are simulated
FI(A) and FQ(A). e)-h) show the simulated cantilever motion (corresponding
color) and surface deflection (magenta) in a the time window 1/∆f . The zoomed
insets show individual oscillation cycles at the time marked by the vertical
dashed line (all insets have the same vertical scale spanning 60 nm). The right-
most column of plots shows the interaction force Fcon(s) experienced during a
simulated time window. The parameters used in the simulations are given in
Table S1
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Supplementary Figure S3: Images of the height and the response amplitude
at the first drive frequency, where the latter is used for surface tracking feed-
back. The sample is a blend of PS and LDPE and the feedback set-point S
was changed during the scan, giving rise to the banded image. a) and b) show
experimental curves FI(A) and FQ(A) at 4 pixels in the LDPE region marked
in the images with an × in the corresponding color. Curves are offset verti-
cally and dashed lines indicate zero force. c) and d) are simulated FI(A) and
FQ(A). e)-h) show the simulated cantilever motion (corresponding color) and
surface deflection (magenta) in a time window 1/∆f . The zoomed insets show
individual oscillation cycles at the time marked by the vertical dashed line (all
insets have the same vertical scale spanning 0.2 nm). The right-most column of
plots shows the interaction force Fcon(s) experienced during a simulated time
window. The parameters used in the simulations are given in Table S1
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Supplementary Figure S4: The amplitude and phase image at the second drive
frequency for the same scan as fig. S3. a) and b) show experimental curves FI(A)
and FQ(A) at 4 pixels in the PS region marked in the images with an × in the
corresponding color. Curves are offset vertically and dashed lines indicate zero
force. c) and d) are simulated FI(A) and FQ(A) curves. e)-h) show the simulated
cantilever motion (corresponding color) and surface deflection (magenta) in a
the time window 1/∆f . The zoomed insets show individual oscillation cycles at
the time marked by the vertical dashed line (all insets have the same vertical
scale spanning 0.4 nm). The right-most column of plots shows the interaction
force Fcon(s) experienced during a simulated time window. The parameters
used in the simulations are given in Table S1
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