Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2015

Supplementary Information: Relevance of saddle-splay elasticity in
complex nematic geometries

Ziga Kos and Miha Ravnik
July 27, 2015

1 Saddle-splay free energy in Q-tensor formulation
The saddle-splay free energy density

Joa = =K54V - [n(V-n) +nxV xn], (A1)
can be rewritten in terms of nematic order parameter tensor @;; as
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by including additional contributions from biaxiality and inhomogeneous scalar order parameter, where
where Koy is the director saddle-splay elastic constant, Loy is the tensor saddle-splay elastic constant, and
n is the director.

The relation between Eq. A.1 and Eq. A.2 can be demonstrated by using the expanded form of the scalar
order parameter tensor

Qij = g (Bnn; — 0i5) + g (egl)e;.l) — e§2)e§2)) (A.3)

in Eq. A.2. Besides the largest eigenvalue of ();; — scalar order parameter S — and the corresponding
eigenvector — director n — Eq. A.3 also includes the biaxiality parameter P, the secondary director e(!), and
the third axis e®®) = n x e, In our approach, Q-tensor is allowed to be biaxial, however P is typically
non-zero only close to defect cores!'2. Expanding Eq. A.2 with full Q-tensor gives many biaxial-dependent
terms (see for example?), which from computational perspective are not very simple to implement and
actually calculate with good precision. Therefore, to calculate the biaxial contributions to the saddle-splay
free energy in the tensorial formulations, we rather construct an uniazial order parameter tensor
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from the scalar order parameter and the director (as obtained from the full @Q);;), and calculate the biaxial
contribution to Eq. A.2 as

. . .. . 0 uni uni o uni uni
8Q]k ank an] ank) - L24 ( jk ank B Q1_7 6QZk ) (A5)

gin o thzn, uni — L24 o
Ox; Ox; Ox; Oxy Ox; Ox; Ox; Oxy

Effectively, being able the account for the biaxiality, we explore the individual invariants from equa-



tion A.2 in terms of uniaxial Q-tensor:
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Subtracting Eq. A.7 and Eq. A.9 gives the uniaxial form of the tensor-based saddle-splay volume free energy
density
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Comparing Eq. A.10 and Eq. A.1 gives the relation Lyy = 4K9,/95%. For Koy = Ko/2 and K; = K3 -as
used in the paper-, Lo4 is exactly equal to L. Eq. A.11 gives the contribution of the inhomogeneous scalar
order parameter to fi5*. Note that a similar procedure is commonly applied to resolve the relations between
director K; and tensorial L, elastic constants®.
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