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Response of polymer mediated surface interactions to changes of the adsorp-

tion strength

Here we will illustrate how a gradual increase of the surface affinity (from a low level), leads

to a surface interaction that is attractive for depleting surfaces, repulsive or nearly vanishing for

intermediate affinities, and finally attractive for strongly adsorbing surfaces. This seems to be a

very general response. We will consider simpler systems than those studied in the main paper,

and all monomers are in the same state. Furthermore, the solvent is here completely implicit, only

influencing the effective potential of mean force that acts between monomers. Specifically, we

will consider two different models: ideal chains, with point-like monomers (theta solvent), and

polymers composed of hard-sphere monomers (good solvent).

We will still use a model with two hard and infinite planar walls, located at z = 0 and z = h. As

in the main text, the hard-wall potential serves to confine the monomers to the regime 0 < z < h,
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and infinite elsewhere. However, we will here also include short-ranged soft interaction, W (z,h),

acting on all monomers, with W (z,h) = w(z)+w(h− z), and βw(z) = A(1− z/zc)
2, z < zc. For a

given choice of zc, we are thus left with a single adsorption parameter, A, describing the surface

affinity. The temperature is kept constant.

Point-like monomers (theta solvent)

It should be emphasized that for this model, the density functional theory (DFT) is exact. We will

simply illustrate the transition regime for two different degrees of polymerization, r. Here, we have

set zc = 2b, where b is the (fixed) bond length. In Figure 1 we see that the qualitative response

is independent of chain length, but the range of A values for which the net interaction is repulsive

does depend (slightly) on r. As expected, the response is more dramatic for longer chains, and the

transition regime is more narrow (in terms of A values). Still, in both cases, the transition does in
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Figure 1: Net surface interaction free energies for ideal polymers, at various surface affinities. Note that we have
neglected residual interactions beyond h = 30b, i.e. we have set ∆gs(h)≈ gs(h)−gs(h = 30b).

both cases correspond to a remarkably small temperature change.

The ideal polymer model is useful, not only because the DFT predictions are exact. Another

advantage is that the data is unusually easy to interpret, since the net outcome results from a rather

limited set of contributions. For instance, given the short range of our surface potentials, there are

only two separate contributions to the total pressure acting across the mid plane of the slit (i.e.

the total internal pressure), namely repulsive ideal entropic term, Pid and an attractive bridging
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pressure, Pbr. The former is proportional to the monomer density at the mid plane, nm(h/2). More

relevant to the net pressure is how these vary relative to their corresponding values in the bulk, i.e.

∆Pid ≡ Pid −Pid(h− > ∞) and ∆Pbr ≡ Pid −Pbr(h− > ∞). These quantities are plotted, across the

0 10 20 30
h / σ

−0.4

−0.2

0

0.2

0.4

β∆
P

m
id
σ3

β∆Pidσ3
, A=−0.380

β∆Pmidσ3
, A=−0.385

β∆Pmidσ3
, A=−0.390

ideal 400−mers

solid/filled: βPbridge σ3

Figure 2: Net pressure contributions across the mid plane, for the systems with ideal 400-mers (graph (a) of Figure
1).

transition regime from depletion to bridging, in Figure 2. One anticipates that ∆Pid will be negative

for weak surface potential, and positive for strong surface affinities, with an opposite trend for

∆Pbr. In both extremes, the net attractive contribution dominates. In the transition between these,

the outcome is less obvious. We recall that we observe a net repulsive interaction for a surface

potential amplitude A=−0.385. In Figure 2, we see that ∆Pbr and ∆Pid are repulsive and attractive,

respectively, for this surface affinity. Hence, the net repulsive bridging pressure dominates, in this

case.

Hard-sphere monomers (good solvent)

Here we consider polymers in which the monomers carry a hard sphere diameter d = σ . The ex-

cluded volume contribution is estimated via a “Generalized Flory-Dimer” theory.1,2 The DFT is

now in principle approximate, but numerous direct comparisons with simulation data have demon-

strated that structural as well as thermodynamic predictions are remarkably accurate.3,4 We will

include calculations of 1600-mers as well as predictions for infinite chains. In the latter case, we

use a reformulated version of polymer DFT, as described in an earlier work.5 The range of the
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surface potential is limited to zc = 2σ , and the bond length is b = 2σ . We will consider two dif-

ferent bulk monomer densities, nb
m. In Figure 3 we again observe a non-monotonic response to

surface affinity. Though difficult to discern at this scale, the net interaction is weakly repulsive for

1600-mers, at the intermediate surface affinity (βA = −0.94), with an oscillatory regime at short

range. With infinite chains, the interaction at long range is negligible.
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Figure 3: Net surface interaction free energies for polymers composed of herd-sphere monomers (good solvent, at
various surface affinities. The bulk monomer concentration is nb

mσ3 = 0.01.

At a higher bulk density, the interactions are overall more short-ranged as expected. Still, the

non-monotonic response is there, i.e. in a range of intermediate surface potentials, the interaction
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Figure 4: Net surface interaction free energies for polymers composed of herd-sphere monomers (good solvent, at
various surface affinities. The bulk monomer concentration is nb

mσ3 = 0.1.

is either weakly repulsive, or vanishing, with some oscillations at short separations.
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Polymer length dependence (main paper system)

Here, we simply show temperature response at the intermediate concentration nb
mσ3 = 0.07 with

gB/gA = 12, in the main paper model system, but with r = 400. This is summarized in Figure 5,

where we note that the overall behaviour is quite insensitive to the degree of polymerization.
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Figure 5: Net interaction free energies, at various temperatures, for the same system as in the main text (at nb
mσ3 =

0.07 and with gB/gA = 12), but with r = 400.

Thermodynamic consistency (main paper system)

Here, we show that our functional is thermodynamically consistent, in the sense that the forces

acting across the right wall (say), as evaluated by the analytic derivative −∂∆Ω/∂h, agrees with

the corresponding discrete derivative, −δ∆Ω/δh. This can be seen as a generalization of the

well-known “contact value theorem”, CVT. Obviously, the CVT is an important thermodynamic

consistency relation, and the two quantities should in principle agree. However, upon numerical

functional minimization, space is naturally discretized, in the z dimension. We shall denote the

grid spacing δ z. For large choices of δ z one can anticipate numerical deviations from the CVT.

This is illustrated in Figure 6, where we see how the two methods to evaluate the net pressure

gradually converge as δ z becomes smaller. We also note, especially in graph (f), how −δ∆Ω/δh

converges much faster than the direct pressure evaluation. In other words, as long as we focus on

free energies, and their derivatives, we do not have to use a finely spaced grid for our calculations.
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In the main paper, we have set δ z = 0.05σ in all our calculations.
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Figure 6: Net pressure, as evaluated analytically from Pwall ≡ −∂∆Ω/∂h, and as a discrete derivative −δ∆Ω/δh,
respectively, for various choices of grid spacing δ z, used in the numerical calculations. This is the “intermediate
temperature” (T ∗ = 2.4) studied in the main text, at nb

mσ3 = 0.1, with gB/gA = 12.
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(f) Here, we compare predictions from −δ∆Ω/δh, as obtained with δ z = 0.05σ and δ z = 0.003125σ , respectively.
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Variation of LCST with polymer length (main paper systems)

As mentioned in the main text, both our investigated systems, i.e. gB/gA = 12 and gB/gA = 13,

display a lower critical solution temperature, T ∗
LCST . This temperature varies with polymer length,

as illustrated in Figure 7. Note how demixing is present also for 45-mers, when gB/gA = 13, in
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Figure 7: Variation of the LCST (or, T ∗
LCST , in reduced units) with polymer length (r), for our two model systems in

the main paper (gB/gA = 12 and gB/gA = 13).

agreement with experimental data6 (but not when gB/gA = 12).

Variation of polymer size with temperature (mai paper system)

As we are using a mean-field theory, the concept of polymer size is not straigtforward to measure.

Nevertheless, we have constructed a simple model that we believe does provide some information

on polymer size, and its relative variation with temperature. Specifically, we consider a spherically

symmetric system, where a polymer is grafted at one end, to the origin. The grafting extends one

bond length, but is otherwise completely flexible, i.e. one of the end monomers in the chain is

constrained to be within a sphere of radius b, centred at the origin: 4π
∫ b

0 r2ng(r)dr = 1 where

ng(r) is the density of the grafted monomer at a distance r from the origin. Then we minimize the

free energy of this system, at various reduced temperatures T ∗. We use < r > as our measure of

“polymer size”, with

< r >=

∫
∞

0 r3nm(r)dr∫
∞

0 r2nm(r)dr
(1)
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The result, for our 45-mers with gB/gA = 13, in the relevant temperature regime 2.0 ≤ T ∗ ≤
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Figure 8: Variation of < r > with temperature.

2.4, is shown in Figure 8. We note that the temperature dependence is weak, in agreement with

experimental data.7

Capillary induced phase separation at bulk supercritical conditions

In this section, we will scrutinize the behaviour of the gB/gA = 13 system, at temperatures below,

but rather close to, the LCST. As we have shown in an earlier work,8 these systems may undergo a

capillary induced phase separation (CIPS) even at temperatures below the LCST, i.e. even though

the bulk is homogeneous for all compositions. This is indeed what we find, as illustrated in Figure

9, where we trace the grand potential for the concentrated and dilute branches separately. The steep

slope of the concentrated branch leads to a rapid drop of the grand potential at separations below

concentrated-dilute coexistence, i.e. below the separations that are denoted “CIPS” in the graphs.
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Figure 9: First-order capillary-induced phase transitions, CIPS, illustrated via the grand potential curves for the
separate concentrated and dilute branches. These meet at a point of coexistence, which is indicated by “CIPS”. The
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