Electronic Supplementary Information

How the Cation 1-butyl-3-methylimidazolium Impacts on the Interaction between the

Entrapped Water and the Reverse Micelles Interface Created with an Ionic Liquid-

like Surfactant

Cristian M. O. Lépori, Juana J. Silber, N. Mariano Correa, R. Darío Falcone*

Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. ARGENTINA.

* Dr. R. Darío Falcone. Corresponding-Author, E-mail: <u>rfalcone@exa.unrc.edu.ar</u>

d _{app} (nm)	PDI	
2.6 ± 0.1	0.07	
2.9 ± 0.1	0.07	
3.2 ± 0.1	0.05	
3.7 ± 0.2	0.02	
3.9 ± 0.2	0.03	
	$d_{app} (nm)$ 2.6 ± 0.1 2.9 ± 0.1 3.2 ± 0.1 3.7 ± 0.2 3.9 ± 0.2	

Table S1. Apparent diameter (d_{app}) and polydispersity index (PDI) values ofbenzene/bmim-AOT/water RMs obtained at 25 °C varying W₀. [bmim-AOT] = 0.05 M.

Chemical shift (ppm)		
bmim-AOT	Na-AOT	
9.52	-	
7.43 and 7.54	-	
4.25	4.29	
3.27 – 3.22	3.17 - 3.15	
4.16	3.95	
4.18	4.08	
	bmim-AOT 9.52 7.43 and 7.54 4.25 3.27 – 3.22 4.16 4.18	

Table S2. ¹H NMR chemical shifts (in ppm) for bmim-AOT and Na-AOT surfactants in Cl_3CD . [Surfactants] = 0.05 M.

Table S3. *dn/dc*, Micellar molecular weight (M_W) and aggregation numbers (N_{agg}) values of benzene/bmim-AOT/water and benzene/Na-AOT/water RMs obtained varying the surfactant concentration at $W_0 = 5$.

Micellar system	$\mathbf{M_{s}^{a}}(g \text{ mol}^{-1})$	<i>dn/dc</i> (mL g ⁻¹)	$\mathbf{M}_{\mathbf{w}}(g \text{ mol}^{-1})$	N _{agg} ^b
benzene/Na-AOT/water	444.6	0.0661 ± 0.0002	8850 ± 392	17 ± 1
benzene/bmim-AOT/water	560.78	0.0608 ± 0.0001	15198 ± 1174	23 ± 2
\overline{a} M _s = molecular weight of	surfactant mono	mer. ^b $N_{agg} = M_w/($	$M_{\rm s} + W_0 * M_{\rm H2O}$. M _{H2O} =
water molecular weight. M_W	was determined	using the equation	$KC/R_{\theta} = 1/M_{W}$	+ 2 A ₂ C,
where C is the surfactant c	oncentration, R ₆	is the Rayleigh 1	ratio, A_2 is the	2 nd virial
coefficient and K is an optic	al constant (K =	$= 4\pi^2 n_0^2 (dn/dc)^2 / N_A^2$	λ^4 where n_0 is the	e solvent
refractive index, λ is the wave	elength of the ind	cident light (488 nm), and N_A is the A	Avogadro
number).				

Figure S1. FT-IR spectra of benzene/surfactant/HDO RMs at different W_0 values in the region of 2640-2420 cm⁻¹. A) bmim-AOT and B) Na-AOT. [surfactant] = 0.2 M.

Figure S2. FT-IR spectra of chlorobenzene/Na-AOT/water RMs at different W₀ values in the region of 1300-1140 cm⁻¹ ($v_{asym}SO_3$). The chlorobenzene bands have been subtracted. [Na-AOT] = 0.05 M.

Figure S3. FT-IR spectra of chlorobenzene/surfactant/water RMs at different W_0 values in the region of symmetrical sulfonate mode. (A) bmim-AOT and (B) Na-AOT. The chlorobenzene bands have been subtracted. [Surfactant] = 0.05 M.

Figure S4. FT-IR spectra of bmim⁺ in chlorobenzene/bmim-AOT RMs at different W_0 values, in the region of 3200-3100 cm⁻¹. [bmim-AOT] = 0.05 M. The chlorobenzene bands have been subtracted.

Figure S5. Typical ¹H NMR spectra for benzene/bmim-AOT RMs at different W_0 in the region of 9.5-8.9 ppm (A) and 4.7-3.3 ppm (B). [bmim-AOT] = 0.05 M.

Figure S6. ¹H NMR chemical shifts of AOT H1` in benzene/bmim-AOT/water RMs at different W_0 . [bmim-AOT] = 0.05 M.

Figure S7. ¹H NMR spectrum of bmim-AOT in Cl_3CD . [bmim-AOT] = 0.05 M.

Figure S8. Debye plots of K^*C/R_{θ} in benzene/surfactant/water RMs as a function of the surfactant concentration (C) obtained by SLS at 90° scattering angle.