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In order to validate our experimental results, three-dimensional
finite-volume method (FVM) simulations were performed only for
the Newtonian case. The aim of this numerical work was to quan-
tify accurately the errors in our experimental measurements with
respect to the real untethered case, basically due to the presence of
the support and the depth of measurement of the µPIV technique.
The SP model and the Newtonian blood analogue fluid were used
for both the experiments and the CFD analysis. On one hand, nu-
merical predictions obtained for the model without cylindrical sup-
port was consider as the reference values to evaluate these errors.
On the other hand, we also carried out a second set of simula-
tions, with the same physical parameters than those used in the
unthetered cases, but including the cylindrical support.

Steady state simulations were developed by means of the open
source CFD package OpenFOAM®. The common solver simple-
Foam and a laminar transport model were used, together with sec-
ond order bounded schemes for the convective terms of the Navier-
Stokes equations1. The governing equations used in flow dynam-
ics are expressed as:

∇·~u = 0 (1)

ρ~u·∇~u =−∇p+η∇
2~u (2)

where ρ is the fluid density,~v is the velocity field, p is the pressure
and η is the constant viscosity.

Fig. S.1 Block scheme and base hexahedral mesh (dashed lines) at the
mid-plane Y = 0.

The fluid-domain was represented by a straight microchannel
with 700×700 µm square cross-section. The SP model of 50 µm
radius was placed at the center of the square cross-section and sep-
arated far away enough from the inlet and outlet sections to avoid
entry and exit effects at the measurement zone. Boundary con-
ditions for velocity field included: an uniform profile at the inlet
section; no-slip condition at the walls, model and support surfaces;
symmetry at the two longitudinal planes Y = 0 and Z = 0 for the
untethered simulations (a quarter of channel was simulated) and
only at the longitudinal plane Z = 0 for the with-support simula-
tions (half of channel was simulated); and a Newmann condition
at the outlet section, setting the velocity derivative to zero in the
flow direction. Boundary conditions for the momentum equation
also include the value of static pressure sets to zero at the outlet
section.

The three-dimensional fluid-domain was divided into blocks in
order to carry out a structured hexahedral mesh. A representa-
tion of these blocks at the channel mid-plane and the base mesh
are depicted in Fig. S.1. A mesh analysis with five different
size meshes and Newtonian fluid behavior was developed for the
two-dimensional (2D) case, represented by the microchannel mid-
plane Y = 0. The mesh refinement level was increased progres-
sively in the near field of the SP model. To provide a quantitative
comparison of the mesh refinement effects, we used two kind of
parameters: an integral parameter as the deviation of the pressure
component of the drag force on the model (∆FX press)2; and two
parameters (PNE and APNE) to quantify velocity errors along the
center line of the rear wake (z = 0) and the line perpendicular to
the stream direction at the center of the model (x = 0), as in Favero
et al3. The PNE and the APNE are the percentage normalized error
and the average percentage normalized error, respectively. These
two parameters were used to provide a quantitative comparison of
the mesh refinement effects. These parameters are defined in the
following way:

PNE = max

(
|U j−U j

re f |
max(|U re f |)

)
× 100 (3)

APNE =

N
∑

j=1
|U j−U j

re f |/max(|U re f |)

N
× 100 (4)

where U j is the value of the fluid velocity X-component U at a point
j of the mesh along the considered profile, U j

re f is the interpolated
value of U in the same point for the reference case, and N is the
number of discretization points on the considered profile. The su-
perscript re f always indicates the values obtained for the mesh
M120, which was selected as reference case. Dimensional features
and sizes of the five meshes are shown in Table S.1, together with
results for the mesh convergence parameters. The mesh M120
was taken as reference to evaluate the refinement effects. Results
showed that the obtained PNE value for the velocity profile at the
line x = 0 was only acceptable for the meshes M80 and M100. Tak-
ing into account these results and the projected size of the three-
dimensional resulting meshes, it is obvious that the M100 mesh
refinement level ensures a high accuracy on the velocity field pre-
diction with an acceptable computational cost. Therefore, the 3D
mesh for the SP model was built dividing the fluid-domain with the
block scheme that shown in Fig. S.1 and with the M100 refinement
parameters also extended on the third dimension.

Five cases were simulated for the untethered and with-support
models, corresponding to Rec = 0.1, 1.02, 10.2 and 51.1 and re-
sults from both sets of simulations were processed to obtain a
correction factor Kp. This factor Kp is defined point-to-point for
each measurement plane Y as a percentage quantity of Um which
is added to the velocity value measured on that point:

up
∗ = up +Kp ·Um (5)

where up
∗, up and Kp are the corrected experimental velocity, the

µPIV measured velocity and the obtained corrector factor at a point
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Table S.1 Dimensional features of the five 2D meshes and convergence
results.

M40 M60 M80 M100 M120
Ns 40 60 80 100 120
Nr (x = 0) 25 35 45 55 65
{∆s/R1}min 0.078 0.052 0.039 0.031 0.026
{∆r/R1}min 0.016 0.012 0.010 0.008 0.006
Cells 66600 221850 520800 1013750 1747800

∆FX press [%] -0.77 -0.28 -0.12 -0.03 -
PNE at z = 0 0.83 0.70 0.14 0.05 -
APNE at z = 0 0.28 0.13 0.042 0.016 -
PNE at z = 0 6.84 2.27 0.79 0.29 -
APNE at z = 0 0.88 0.33 0.15 0.07 -

p of a plane Y , respectively. Due to the geometry of the studied
flow, the streamwise velocity field give much more representative
information about the flow features than the cross-stream direction
velocity field, and this is why we focused only on the streamwise
velocity correction. However a similar process could be applied to
the cross-stream direction velocity at the plane Y .

The factor Kp considers two error sources in each point p: the
error introduced by the presence of the cylindrical support (k1 p)
and the error due to the optical depth of measurement (k2 p), then
Kp = k1 p + k2 p. Firstly, the presence of the cylindrical support in-
creases the blockage ratio at the microchannel cross-section and
consequently leads to higher velocities of the fluid at the contrac-
tion created by the model. For a given Y -plane this error is quantify
point-to-point by the factor k1 p, defined as the following way:

k1 p =
{u′p}untt −{u′p}wsup

U ′m
(6)

{u′p}untt , {u′p}wsup being the numerical predicted velocity at the
point p for the untethered and with-support simulations, respec-
tively; and U ′m the numerical mean velocity in the channel. Max-
imum values for the factor k1 p are reached at the microchannel
centerplane Y = 0 for the lowest Reynolds number case and its
maximum value was ∼0.1.

Secondly, in a µPIV setup the entire depth of the channel is il-
luminated by the laser light and hence the thickness of the mea-
surement plane is defined by the depth of field of the microscope
objective. This thickness is usually expressed in terms of depth of
correlation (DOC), which is defined as twice the distance from the
focal plane to the nearest plane in which a particle becomes suf-
ficiently defocused to not contribute to the cross-correlation anal-
ysis4. The depth of correlation and the interrogation area cho-
sen for the cross-correlation analysis define the interrogation vol-
ume. Therefore the velocity value measured at a certain position
is given by a weighted average of the particles contained in that
interrogation volume5. For the case of a microchannel with a cir-
cular cylinder placed in the square cross-section centerline (typi-
cally considered as the two-dimensional case of the flow around
a sphere), the velocity at any point of a plane contained in the
interrogation volume remains almost unchanged with respect to
that in the center plane of the interrogation volume. However, our
three-dimensional microbot model causes secondary flows perpen-
dicular to the focal plane in the near field of the sphere. This may
lead to velocity fields in planes above and below the focal plane

quite different to the velocity field in the focal plane. Therefore,
a deviation on the obtained velocities exists since the measured
value at a point is a weighted average of the velocities at the same
point along the Y -direction of the interrogation volume. This er-
ror was quantify point-to-point for each measurement plane Y by
means of the factor k2 p, defined as:

k2 p =
{u′p}0−u′p

U ′m
(7)

where {u′p}0 is the numerical velocity predicted at the point p at
the focal plane and u′p is the weighted average of the velocity along
the Y -direction of the interrogation volume at the same point p
evaluated from the numerical results. This correction factor k2 p
was estimated from the with-support simulations results, applying
the formulation developed by Rossi et al.6 to calculate the effec-
tive depths of correlation (DOC) and the corresponding weighting
functions W (y) for the µPIV setup used (equations 11-16 in Rossi et
al.6). Results for effective depths of correlation of the lenses used
in this work are shown in Table S.2.

Table S.2 Characteristic parameters for the objectives used in the µPIV
measurements and their effective Depths of Correlation.

Magn. (M) NA cd
6 DOC [µm]

10x 0.30 0.80 48.1
20x 0.40 0.75 30.9

To calculate u′p, a discrete sample of the velocity at the same
point p in N Y -planes separated ∆y = 5 µm each other within the
interval -DOC/2≤ yn ≤+DOC/2 was taken and averaged using the
weighting function. Therefore, u′p can be expressed in the follow-
ing terms:

u′p =
∑

N
n=1{u′p}n ·W (yn)

∑
N
n=1 W (yn)

(8)

where {u′p}n and W (yn) are the velocity at the point p and the
weighting function value, respectively, at the Y -plane n. The max-
imum values for the correction factor k2 are given at the plane Y
= +50 µm due to the presence of the model above the focal plane
and a free-obstacles flow below it. The maximum value for k2 was
∼0.06, just at the point where the 3D model is tangential to the
focal plane.

The lens M = 20x was used to measure velocity at several planes
from Y = 0 to Y = +70 µm for Rec = 1.02 case. An interrogation
area of 32×64 pixels and 50% overlap was chosen for the cross-
correlation analysis, giving velocity values each 5.92×11.84 µm.
Fig. S.2[a] depicts the raw and corrected streamwise velocity u∗

profiles at the centerline of each Y -plane, together with the numer-
ical results for the untethered SP model. Corrected experimental
velocity fields and numerical prediction for the spherical microbot
model are roughly in good agreement. However, the most unfa-
vorable measurement plane correspond to Y = +50 µm, where
any slight deviation on the focal plane Y -positioning may cause
such a big difference between the experimental value and the nu-
merical velocity prediction, especially at the point x = z = 0 (SP
model tangential to the focal plane). Furthermore, the lens M =
10x was also used to obtain velocity measurements in the chan-

2 | 1–3Journal Name, [year], [vol.],



Fig. S.2 Raw and corrected experimental streamwise velocity u∗ profiles
with Newtonian blood analogue fluid and numerical prediction for the
untethered SP model: [a] Streamwise velocity at the centerline of each
Y -plane for Rec = 1.02; [b] Normalized streamwise velocity at the
mid-plane centerline and [c] at the mid-plane cross-stream direction line
at xw = 250 µm, for different Rec.

nel mid-plane (Y = 0) for Reynolds numbers in the channel 0.1,
1.02, 10.2 and 51.1. For this lens, an interrogation area of 16×32
pixels and 50% overlap was chosen for the cross-correlation anal-
ysis, giving the same grid for the velocity field. Fig. S.2[b] and
[c] depicts the normalized velocity profiles at the microchannel
centerline and the cross-stream direction line at xw = 250 µm, be-
ing xw the distance downstream of the rear stagnation point on
the model surface. Again numerical and experimental results are
in good agreement. Comparison between numerical and experi-
mental data enables to ensure that the velocity values measured
by µPIV are representative of the real untethered model dynam-
ics and even to quantify the experimental errors derived from our
set-up.
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