Supplementary Material (ESI) for Soft Matter

Analogy between compressible 3D Kirchhoff's rod and relativistic rotor

By Oz Oshri and Haim Diamant

In this supplementary document we derive the equations of equilibrium for a 3D compressible elastic rod under the assumptions of Kirchhoff's model [1, 2]. It is shown that these equations are mathematically analogous to the 3D Euler's equations of rigid-body rotation, where the non-relativistic angular momentum, **L**, is replaced by, γ **L**, γ being the Lorentz factor. This analogy is derived while keeping in mind the known difficulties in the latter, relativistic problem [3, 4].

Following the formulation in ref. [5], we consider a space curve described by the position vector, $\mathbf{R}(s)$, where s is the arclength parameter of the relaxed configuration. Defining \hat{s} as the arclength parameter of the deformed configuration, the unit tangent vector to $\mathbf{R}(s)$ is given by, $\mathbf{d}_3 = d\mathbf{R}/d\hat{s}$. In addition, let $\{\mathbf{d}_1, \mathbf{d}_2\}$ be a pair of unit vectors perpendicular to \mathbf{d}_3 and parallel to the principal axes of the filament's cross-section. The triad $\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ form a co-moving coordinate frame attached to the rod's mid-axis. These vectors satisfy the relations,

$$\frac{d\mathbf{d}_i}{ds} = \gamma \boldsymbol{\kappa} \times \mathbf{d}_i,\tag{1}$$

where i = 1, 2, 3, $\gamma = d\hat{s}/ds$ is the strain field, and $\boldsymbol{\kappa} = \kappa_1 \mathbf{d}_1 + \kappa_2 \mathbf{d}_2 + \kappa_3 \mathbf{d}_3$ is the curvature vector. The local bending moment is given by,

$$\mathbf{M}(s) = B_1(\gamma \kappa_1) \mathbf{d}_1 + B_2(\gamma \kappa_2) \mathbf{d}_2 + B_3(\gamma \kappa_3) \mathbf{d}_3,$$
(2)

where B_i are bending rigidities.

In correspondence with eqn (1) of the main text, the energy functional of a 3D elastic filament, confined by a boundary constant force **P**, is given by $E = \int_0^L e[\boldsymbol{\kappa}(s), \gamma(s)] ds$, where

$$e[\boldsymbol{\kappa}(s), \gamma(s)] = \frac{1}{2} \mathbf{M} \cdot (\gamma \boldsymbol{\kappa}) + \frac{Y}{2} (\gamma - 1)^2 + \gamma \mathbf{d}_3 \cdot \mathbf{P}.$$
(3)

The appearance of the $\gamma \kappa$ term in the bending energy is a consequence of the requirement to keep bending and compression contributions independent. Minimizing eqn (3) with respect to γ and κ_i (keeping in mind that κ_i are not independent) gives [5],

$$\frac{d\mathbf{M}}{d\hat{s}} - \mathbf{d}_3 \times \mathbf{P} = 0, \tag{4}$$

$$Y(\gamma - 1) + \mathbf{d}_3 \cdot \mathbf{P} = 0. \tag{5}$$

In the incompressible limit eqn (5) is redundant and equations (4) become analogous to the non-relativistic Euler equations of a 3D rigid body, fixed at one point and rotating under the influence of an external force (such as gravity) [6, p. 200]. In this analogy, the bending moment takes the role of angular momentum, $\mathbf{M} \leftrightarrow \mathbf{L}$, and the boundary force is analogous to an external torque, $\mathbf{d}_3 \times \mathbf{P} \leftrightarrow \mathbf{N}$. Turning on compressibility effects, we have by eqn (2) that $\mathbf{M} \to \gamma \mathbf{M}$. Thus, it is left to show that γ coincides with the Lorentz factor. First integration of equations (4) and (5) gives,

$$\mathcal{H} = \frac{1}{2}\mathbf{M} \cdot (\gamma \boldsymbol{\kappa}) - \frac{Y}{2}(\gamma - 1)^2 - \gamma \mathbf{d}_3 \cdot \mathbf{P} = \text{const.}$$
(6)

Eliminating $\mathbf{d}_3 \cdot \mathbf{P}$ from eqn (6) and substituting in eqn (5) gives,

$$\gamma = \frac{\sqrt{1 + 2\mathcal{H}/Y}}{\sqrt{1 + \frac{B_1}{Y}\kappa_1^2 + \frac{B_2}{Y}\kappa_2^2 + \frac{B_3}{Y}\kappa_3^2}}.$$
(7)

This expression indeed resembles the Lorentz factor up to the constant prefactor, $\gamma_0 \equiv \sqrt{1 + 2\mathcal{H}/Y}$, which appears also in the 2D problem, and which can be absorbed in the force **P**, (see discussion in the main text).

References

- [1] E. H. Dill, Arch. Hist. Exact. Sci., 1992, 44, 2-23.
- [2] M. Nizette and A. Goriely, J. Math. Phys., 1999, 40, 2830-2866.
- [3] G. Rizzi, and M. L. Ruggiero, *Relativity in Rotating Frames*, Kluwer Academic, Dordrecht, The Netherlands (2004).
- [4] R. Rynasiewicz, Philosophy of Science, 2000, 67, 70-93.
- [5] S. Lafortune, A. Goriely, M. Tabor, J. Nonlinear Dyn., 2005, 43, 173-195.
- [6] H. Goldstein, C. Poole, J. Safko, *Classical Mechanics*, 3rd edition, Addison-Wesley (2002).