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Analogy between compressible 3D Kirchhoff’s rod
and relativistic rotor

By Oz Oshri and Haim Diamant

In this supplementary document we derive the equations of equilibrium for a 3D compressible elastic rod
under the assumptions of Kirchhoff’s model [1, 2]. It is shown that these equations are mathematically analogous
to the 3D Euler’s equations of rigid-body rotation, where the non-relativistic angular momentum, L, is replaced
by, γL, γ being the Lorentz factor. This analogy is derived while keeping in mind the known difficulties in the
latter, relativistic problem [3, 4].

Following the formulation in ref. [5], we consider a space curve described by the position vector, R(s),
where s is the arclength parameter of the relaxed configuration. Defining ŝ as the arclength parameter of the
deformed configuration, the unit tangent vector to R(s) is given by, d3 = dR/dŝ. In addition, let {d1,d2} be
a pair of unit vectors perpendicular to d3 and parallel to the principal axes of the filament’s cross-section. The
triad {d1,d2,d3} form a co-moving coordinate frame attached to the rod’s mid-axis. These vectors satisfy the
relations,

ddi

ds
= γκκκ× di, (1)

where i = 1, 2, 3, γ = dŝ/ds is the strain field, and κκκ = κ1d1 + κ2d2 + κ3d3 is the curvature vector. The local
bending moment is given by,

M(s) = B1(γκ1)d1 +B2(γκ2)d2 +B3(γκ3)d3, (2)

where Bi are bending rigidities.
In correspondence with eqn (1) of the main text, the energy functional of a 3D elastic filament, confined by

a boundary constant force P, is given by E =
∫ L

0
e[κκκ(s), γ(s)]ds, where

e[κκκ(s), γ(s)] =
1

2
M · (γκκκ) +

Y

2
(γ − 1)2 + γd3 ·P. (3)

The appearance of the γκκκ term in the bending energy is a consequence of the requirement to keep bending and
compression contributions independent. Minimizing eqn (3) with respect to γ and κi (keeping in mind that κi
are not independent) gives [5],

dM

dŝ
− d3 ×P = 0, (4)

Y (γ − 1) + d3 ·P = 0. (5)

In the incompressible limit eqn (5) is redundant and equations (4) become analogous to the non-relativistic
Euler equations of a 3D rigid body, fixed at one point and rotating under the influence of an external force (such
as gravity) [6, p. 200]. In this analogy, the bending moment takes the role of angular momentum, M↔ L, and
the boundary force is analogous to an external torque, d3×P↔ N. Turning on compressibility effects, we have
by eqn (2) that M → γM. Thus, it is left to show that γ coincides with the Lorentz factor. First integration
of equations (4) and (5) gives,

H =
1

2
M · (γκκκ)− Y

2
(γ − 1)2 − γd3 ·P = const. (6)

Eliminating d3 ·P from eqn (6) and substituting in eqn (5) gives,

γ =

√
1 + 2H/Y√

1 + B1

Y κ21 + B2

Y κ22 + B3

Y κ23

. (7)

This expression indeed resembles the Lorentz factor up to the constant prefactor, γ0 ≡
√

1 + 2H/Y , which
appears also in the 2D problem, and which can be absorbed in the force P, (see discussion in the main text).
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