Supplementary information for

Gelation Behaviour of a Bent-core Dihydrazide Derivative : Effect of

Incubation Temperature in Chloroform and Toluene

Chunxue Zhang^a, Tianren Zhang^a, Nan Ji^b, Yan, Zhang^a, Binglian Bai^b, Haitao Wang^a, and Min Li^{*,a}

^a Key Laboratory of Automobile Materials, Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China

^b College of Physics, Jilin University, Changchun 130012, PR China

* Corresponding author

Tel: +86-431-85168254

E-mail: minli@mail.jlu.edu.cn

Scheme 1 Synthetic route of BP8-C.

¹H NMR (300MHz, DMSO)(ppm, from TMS): 10.60(s,2H); 10.42(s,2H); 8.5(s,1H);
8.1(m,2H); 7.7(m,1H); 7.56-7.52(m,4H); 7.07(m,2H); 4.05-3.99(m.8H); 1.80-1.78(m,8H); 1.48-1.40(m,8H); 1.38-1.28(m,32H); 0.90-0.82(m,12H). FT-IR (KBr, pellet, cm⁻¹):3189, 3022, 2952, 2922, 2852, 1652, 1606, 1570, 1517, 1480, 1390, 134
0, 1268, 1225, 1147, 1125, 1059, 1014, 857, 720, 638, 515. Elemental analysi
s: calculated for C₅₄H₈₂N₄O₈ (%), C, 70.86; H, 9.03; N, 6.12; Found, C, 70.97; H, 8.73; N, 6.06.

Photo 1. Pictures of T-gel and O-gel (left), and jelly-like T-gel (right).

Fig.S1 Concentration related fluorescence spectrum of BP8-C/CHCl₃ (λ_{ex} = 370 nm) under room temperature.

Fig.S2 Dynamic fluorescence intensity for BP8-C in toluene (10.12 mg/mL) undergoing gelation process at different incubation temperatures (λ_{ex} = 339 nm, λ_{em} = 360 nm).

Fig. S3 Nucleation time t_1 , gelation time t_2 and $t_{1/2}$ verse incubation temperatures for 5.00 mg/mL BP8-C in CHCl₃ (a) and 5.12 mg/mL in toluene (b).

Fig.S4 XRD results of xerogels from BP8-C/toluene system. (a) toluene, 20 $^\circ\mathbb{C}$,

xerogels, 10.12 mg/mL; (b) toluene, -24 $^\circ C$, precipitate, 10.12 mg/mL; (c) toluene, 20

 $^\circ\!\mathrm{C}$, xerogels, 5.34 mg/mL; (d) toluene, -24 $^\circ\!\mathrm{C}$, precipitate, 5.34 mg/mL.

Fig.S5 Comparison of partial FT-IR results of BP8-C xerogels: (a) xerogels for T-gel in CHCl₃, 20 $^{\circ}$ C, 5.00 mg/mL; (b) xerogels for O-gel in CHCl₃, -24 $^{\circ}$ C, 5.00 mg/mL; (c) xerogels from toluene, 20 $^{\circ}$ C, 10.12 mg/mL; (d) precipitate from toluene, -24 $^{\circ}$ C, 10.12 mg/mL; (e) xerpgels from toluene, 20 $^{\circ}$ C, 5.34 mg/mL; (f) precipitate from toluene, -24 $^{\circ}$ C, 5.34 mg/mL.

Fig.S6 Kinetic plots for gelation of sols of 10.12 mg/mL BP8-C/toluene. (a) Avrami data and values of *n*; (b) Dickinson plots, (10 °C, first stage: slope = 0.57, D_f = 1.91; second stage: slope = 1.21, D_f = 1.36), (20 °C, first stage: slope = 0.43, D_f = 2.09; second stage: slope = 1.27, D_f = 1.32), (30 °C, first stage: slope = 0.60, D_f = 1.87; second stage: slope = 1.21, D_f = 1.36).

Fig.S7 FE-SEM pictures of xerogels of BP8-C/toluene with concentration of 5.34

mg/mL (0 $^\circ \!\!\! ^\circ \!\!\! ^\circ \!\!\! ^\circ$).

Fig.S8 DSC lines for BP8-C in the second heating run and first cooling run; insert: POM picture of Col_h mesophase of BP8-C at 195 $^\circ$ C.

Fig.S9 XRD results of BP8-C crystal cooled to room temperature after heated to liquid.

	0 ℃	5 ℃	10 ℃	15 ℃	20 °C
t ₁ (s)	172	169	322	329	366
t ₂ (s)	333	468	378	423	482
<i>t_{1/2}</i> (s)	162	167	178	206	333
K (× 10 ⁻³ s ⁻¹)	6.17	5.98	5.62	4.85	3.00

Table S1 t₁, t₂, $t_{1/2}$ values for dynamic gelation process of 5.00 mg/mL BP8-C/CHCl₃.

Table S2 t₁, t₂, $t_{1/2}$ values for dynamic gelation process of 5.34 mg/mL BP8-C/toluene.

	5 ℃	15 °C	20 °C	25 ℃	30 ℃	35 ℃	40 °C
t ₁ (s)	7370	5487	3689	2342	1393	1246	1197
t ₂ (s)	1785	1639	1074	1053	664	563	559
t _{1/2} (s)	1003	832	535	507	419	244	216
<i>K</i> (× 10 ⁻³ s ⁻¹)	1.00	1.20	1.87	1.97	2.39	4.10	4.63

Table S3 t_1 , t_2 , $t_{1/2}$ values for dynamic gelation process of 10.12 mg/mL BP8-C/toluene.

	10 °C	20 °C	30 ℃
t ₁ (s)	1492	1075	1093
t ₂ (s)	1804	892	853
t _{1/2} (s)	926	417	402
<i>K</i> (× 10 ⁻³ s ⁻¹)	1.08	2.40	2.49

Table S4 Assignments of infrared frequencies for xerogels of BP8-C/toluene of 10.12 mg/mL incubated under 20 $^{\circ}\text{C}.$

Wavenumbers (cm ⁻¹)	Assignments		
3197	υ(NH)		
3080 3024	c(C-H) of aromatic ring		
2955 2871	υ _{as} (CH ₃) υ _s (CH ₃)		
2925 2855	$\upsilon_{as}(CH_2) \ \upsilon_s(CH_2)$		
1674 1646	Amide I		
1605 1573	υ(C=C) of aromatic ring		
1509	υ(C=C) of aromatic ring		
1464	CH_2 scissoring, $\delta(CH_3)$		
1392	CH₃ symmetrical C-H bending		
1339	CH ₂ twisting		
1270	υ(Ar-O)		
1224	Amide III		
1151	υ(C-O)		
1020	υ(Ar-C)		
856 817 754	$\delta(CH)$ (out of the plane)		
722	$(CH_2)_n$ rocking $n \ge 4$		