Supplementary Information

Preparation and characterization of Polybenzoxazine/Polyhedral Oligomeric Silsesquioxane/SWCNTs Hybrid Complexes through Supramolecular Interactions

Hsi-Kang Shih,^a Chun-Cheng Hsieh,^b Mohamed Gamal Mohamed,^b Feng-Chih Chang,^{a,b} Chao-Yuan Zhu^{a,*} and Shiao-Wei Kuo^{b,*}

^{a.} Institute of Applied Chemistry, National Chiao Tung University, HsinChu, 300 Taiwan

^{b.} Department of Materials and Optoelectronic Science, National SunYat-Sen University, Kaohsiung, 804 Taiwan

E-mail: kuosw@faculty.nsysu.edu.tw (S.-W.K.); Tel.: +886-7525-4099 (S.-W.K.).

Experimental Section

(3-(Pyren-1-yl)-3,4-dihydro-2*H*-benzo[*e*][1,3]oxazin-6-yl)methanol (Py-Bz-OH)

A solution of 4-hydroxybenzyl alcohol (2.29 g, 18.4 mmol), pyren-1-amine (2.00 g, 9.20 mmol), and paraformaldehyde (1.38 g, 46 mmol) in dioxane/toluene/ethanol (8/8/4 mL) was heated in a 50-mL two-necked flask under N₂at 100 °C for 12 h, and then the solvent was evaporated under reduced pressure. The solid residue was washed with CH₂Cl₂ and 1 M NaOH (aq.) and then dried (MgSO₄) The product was purified through column chromatography (SiO₂; *n*-hexane/THF, 1:1), yielding a yellow powder (78%). ¹H NMR (*d*₆-DMSO, ppm): 4.37 (d, 2H, ArCH₂OH), 4.80 (s, 2H, CHCH₂N), 5.49 (s, 2H, OCH₂N), 6.83 (d, 1H, CH₂OCCHCH), 7.02 (s, 1H, NCH₂CCHC), 7.12 (d, 1H, CH₂OCCHCHC), 7.88–8.38 (m, 9H, Py-*H*); ¹³C NMR (*d*₆-DMSO, ppm): 52.18 (CHCH₂N), 62.84 (ArCH₂OH), 82.07 (OCH₂N), 116.39–131.13 (aromatic), 135.52 (CCH₂OH), 144.02 (NCC(CH)), 153.80 (OCCH); FTIR (KBr, cm⁻¹): 942 (out-of-plane C–H bending from oxazine ring), 1240 (Ar-O–C stretching), 3394, 3566, 3628 (Ar–OH stretching).

(3-(Pyren-1-yl)-3,4-dihydro-2*H*-benzo[*e*][1,3]oxazin-6-yl)methyl Acrylate (Py-Bz-Ac)

Py-Bz-OH (1.50 g, 4.10 mmol) and Et₃N (1.25 g, 12.3 mmol) were placed in THF (20 mL) in a 50mL two-necked flask under N₂ and cooled in an ice bath for 30 min. Acryloyl chloride (1.11 g, 12.3 mmol) was added and then the mixture was stirred for 3 h at room temperature. The reaction was quenched with 1 M NaHCO₃ and partitioned between distilled water and CH₂Cl₂. The organic phase was dried (MgSO₄) and concentrated. The residue was purified through column chromatography (SiO₂; *n*-hexane/THF, 4:1), yielding a yellow product (70%).¹H NMR (*d*₆-DMSO, ppm): 4.80 (s, 2H, CHC*H*₂N), 5.02 (s, 2H, ArC*H*₂OC=O), 5.54 (s, 2H, OC*H*₂N), 5.88, (d, 1H, CCH=C*H*₂), 6.16 (dd, 1H, CC*H*=CH₂), 6.35 (d, 1H, CCH=C*H*₂), 6.83 (d, 1H, CH₂OCC*H*CH), 7.02 (s, 1H, NCH₂CC*H*C), 7.11 (d, 1H, CH₂OCCHC*H*C), 7.88–8.38 (m, 9H, Py-*H*); ¹³C NMR (*d*₆-DMSO, ppm): 52.18 (CHCH₂N), 65.2 (ArCH₂OC=O), 82.07 (OCH₂N), 127.85 (CH=CH₂), 132.50 (CCH=CH₂), 117.06–132.43 (aromatic), 144.51 [NCC(CH)], 154.53 (CHCOC*H*₂N), 166.19 (*C*=O); FTIR (KBr, cm⁻¹): 942 (out-of-plane C–H bending from oxazine ring), 1180 (C–O–C stretching), 1722 (C=O stretching).

(3-(Pyren-1-yl)-3,4-dihydro-2*H*-benzo[*e*][1,3]oxazin-6-yl)methyl3-(5-Methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)propanoate (Py-Bz-T)

A solution of T (1.68 g, 13.3 mmol) and Et₃N (1.35 g, 13.3 mmol) in DMSO (20 mL) was heated in a 50-mL two-necked flask under N₂ at 55 °C for 2 h. The solution was injected into a two-necked flask under N₂ containing Py-Bz-Ac (1.4 g, 3.34 mmol) and then the mixture was heated at 55 °C for 24 h. The solvent was evaporated under reduced pressure. The residue was washed with CH₂Cl₂ and then the solution was filtered to remove any unreacted T. Re-precipitation from EtOH yielded a yellow powder (58%). ¹H NMR (d_6 -DMSO, ppm): 1.67 (s, 3H, NCH=CCH₃), 2.67 (d, 2H, O=CCH₂CH₂N), 3.83 (d, 2H, O=CCH₂CH₂N), 4.83 (s, 2H, CHCH₂N), 4.93 (s, 2H, ArCH₂OC=O), 5.54 (s, 2H, OCH₂N), 6.87 (d, 1H, CH₂OCCHCH), 7.08 (s, 1H, NCH₂CCHC), 7.14 (d, 1H, CH₂OCCHCHC), 7.43 (s, 1H, O=CNCH=C) 7.88–8.38 (m, 9H, Py-H), 11.22 (1H, O=CNHC=O); ¹³C NMR (d_6 -DMSO, ppm): 11.96 (NCH=CCH₃), 32.92 (O=CCH₂CH₂N), 43.95 (O=CCH₂CH₂N), 52.18 (CHCH₂N), 65.99 (ArCH₂OC=O), 82.14 (OCH₂N), 108.70 (NCH=CCH₃), 115.91–135.65 (aromatic), 142.43 (NCH=C), 144.49 [NCC(CH)], 151.53 (NC=ONH), 154.49 (CHCOCH₂N), 165.08 (OC=O), 171.52 (NHC=OC); FTIR (KBr, cm⁻¹): 942 (out-of-plane C–H bending of oxazine ring), 1240 (Ar–O–C stretching), 1676 (C=O stretching), 3186 (NH stretching).

Chemical shift (ppm)

Fig. S1 ¹H NMR spectrum of Py-Bz-OH.

Fig. S2 DSC thermograms of Py-Bz-OH, Py-Bz-Ac, and Py-Bz-T.

Fig. S3 TGA traces of (a) Py-Bz-OH and cured Py-Bz-OH; (b) Py-Bz-Ac and cured Py-Bz-Ac; (c) Py-Bz-T and cured Py-Bz-T.

Fig. S4 DSC thermograms of of Py-Bz-T, recorded after 180 °C 2 h, and 200 °C 1 h.

Fig. S5 (a) ¹H NMR spectra, (b) ¹³C NMR spectra, and (c) FTIR spectra of Q_8M_8 , OVBC-POSS, and OBA-POSS.

Fig. S6 FTIR spectra and fitting results with different wt% of Py-Bz-T/OBA- POSS nanocomposite at 1750-1550 cm⁻¹ region.

Fig. S7 UV-vis spectrum of Py-Bz-T/OBA-POSS nanocomposite (60/40).