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Supplementar
y Figure S1. Example fitting of the standard 2D autocorrelation function (equation S1, red) to 
experimental autocorrelation curves, black. Membranes contained increasing concentrations of 
Ni-NTA-DOGS lipids and were crowded by membrane-bound transferrin proteins. 
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Supplementary Figure S2. Example fitting of the anomalous 2D autocorrelation function 
(equation S2, red) to experimental autocorrelation curves, black. Membranes contained 
increasing concentrations of Ni-NTA-DOGS lipids and were crowded by membrane-bound 
transferrin proteins. 
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Figure S3. The anomalous diffusion exponent,, as a function of the concentration of protein 
binding sites. These data come from fits to FCS curves for membrane-bound, fdiffusing 
transferrin proteins.  

Steric exclusion model of the influence of protein crowding on membrane protein diffusion. 

A simple Boltzmann lattice model predicts that the diffusivity of non-interacting spherical 

particles over length scales much longer than the molecular size will decrease linearly with 

increasing molecular coverage 1. Specifically, for a one dimensional lattice, which can be 

generalized to two or three dimensions, a molecule at a given position within the lattice can 

either move to the left or right by a step size, a, or stay in its present position at each time step. 

Steps to the left and right are equally probable. Under dilute conditions, these probabilities are 

each ½, and the probability of staying in place is zero for sufficiently long time steps. However, 

if the space to either the left or right of the particle is occupied, the particle cannot move in these 

directions and the probability of staying in place increases accordingly. For a given value of 

coverage, , the probability of moving to the left and right are each , and the 

1
2
(1 ‒ 𝛼𝜙)

probability of staying in place is , where  is a constant, approximately equal to 2 for 2D 

diffusion2. Accordingly, the root mean squared displacement of each particle is simply the 

displacement associated with each possible outcome of the time step multiplied by the 

probability of that outcome. Since the displacement associated with staying in place is zero, the 
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root mean squared displacement is simply . Under dilute conditions  〈𝑥2〉= 𝑎2(1 ‒ 𝛼𝜙)

approaches zero such that the ratio of the root mean squared displacements under crowded and 

dilute conditions is  , which is equal to the ratio of crowded and dilute 

〈𝑥2〉
〈𝑥2〉0

=
𝑎2(1 ‒ 𝛼𝜙)

𝑎2
=
𝐷
𝐷0

diffusivities. The step size cancels in this expression yielding the following expression for the 

crowded diffusivity as a function of the dilute diffusivity and , . Notably, the 𝐷= 𝐷0(1 ‒ 𝛼𝜙)

probability that a tracer protein will make a step at each time interval is independent of the size 

of both the tracer and surrounding crowders, depending only on the overall coverage of the 

membrane surface. This can be explained as seen in Supplementary Fig. S2. When the lattice 

step size is governed by the smallest particle, size a, both the large and small particles can diffuse 

over the same step size a. The probability of moving into a left or right adjacent lattice position 

remains p=0.5(1 – ϕ), for constant , regardless of crowder and tracer size, provided all particles 

have the same diffusive rate under dilute conditions. 

S5



Supplementary Figure S3. Cartoon representation of diffusion along a 1-D lattice, adapted from 

1. (A) Homogeneous diffusion of equally-sized tracer and crowder particles, with a diffusion step 

size of a, the lattice size of the particle. (B) Diffusion of a large tracer particle among small 

crowders. Note that the step size is still a, the lattice size of the smaller crowder particle. (C) 

Diffusion of a small tracer particle among large crowders.

Supplementary Figure S4. Diffusivity calculated from MD simulations as a function of 

molecular coverage  for a range of ε (Lennard-Jones potential minimum energy well depth) 

values, in units of kcal per mole. Lines represent linear best fits. 
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