Supporting Information

Local Coordination and Dynamics of a protic Ammonium based Ionic Liquid Immobilized in Nano-porous Silica probed by Raman and NMR Spectroscopy

Mounesha N. Garaga,^a Michael Persson,^{a,b} Negin Yaghini^a and Anna Martinelli^{*a}

^a Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden, ^b AkzoNobel Pulp and Performance Chemicals, Gothenburg, Sweden

Fig. SI1 2D solid-state ²⁹Si{¹H} HETCOR NMR spectrum of the silica/DEMA-OMs gel with Φ SiO₂ = 0.68, or 25% pore filling, dehydrated at 150 °C for 24 hours. NMR spectra were collected on a Varian NMR spectrometer at a magnetic field of 14.1 T and at a MAS rate of 10 kHz.

Fig. SI2 ¹H NMR chemical shifts of the NH and H₂O NMR peaks plotted against the volume fraction of silica (ΦSiO_2) .

Fig. SI3 ¹H NMR full width at half maximum (FWHM) of the NMR peaks assigned to H₂O, anion, and cation (average) plotted against the volume fraction of silica (ΦSiO₂).

Fig. SI4 Number of water molecules actually present in the gels as estimated from the integrated areas in the ¹H solid-state NMR spectra, shown as number of H₂O molecules per DEMA:OMs pair (a) and converted to number of H₂O molecules per surface area of silica (b).

Fig. SI5 Raman spectra of silica/DEMA-OMs gels in the region of (a) 1000-1100 cm⁻¹ and (b) 2700-3200 cm⁻¹.

Fig. SI6 A representative plot of I/I_0 vs G of (a) DEMA-OMs and (b) silica gel (Φ SiO₂=0.24) extracted from ¹H peak at 1.3 ppm that is assigned to the methyl group of the cation. Detailed experimental conditions are also given. The diffusion measurements were performed on a 600 MHz Bruker NMR spectrometer.

Fig. SI7 Plot of the attenuated intensity versus gradient component showing a bi-exponential dependence for gels with $\Phi SiO_2 = 0.21$, 0.24, and 0.26, and a single exponential dependence for the gels with $\Phi SiO_2 = 0$, 0.35 and 0.54.

Fig. S18 Molar conductivity (Λ_{NMR}) of silica gels (red) plotted against Φ SiO₂ and calculated from the self-diffusion coefficients (D) using the Nernst-Einstein equation. For comparison, Λ_{NMR} values calculated from the D values of C₆C₁ImTFSI in sol-gel prepared silica gels (Nayeri et.al. reference 12) are also reported (green). Red and green short-dashed lines are guide to the eye.

Volume fraction of silica (φ_{Sio_2})

$$\varphi_{Sio_2} = \frac{V_{SiO_2}}{V_{SiO_2} + V_{IL}}$$

 $\rho_{SiO2} = 2.2 \text{ g/cm}^3 \text{ and } \rho_{IL+H2O} = 1.096 \text{ g/cm}^3$

Conversion from pore filling (%) to volume fraction (φ_{SiO2}).

Silica particles contain 65% of free space, and 35% of dense silica matrix.

$$V_{SiO_2} = 35$$
, $V_{IL} => V_{Free space} = n 65$, where $n = \%$ of pore filling

For 200% pore filling,
$$\varphi_{Sio_2} = \frac{35}{35 + \frac{200}{100}65} = 0.21$$

For 100% pore filling,
$$\varphi_{Sio_2} = \frac{35}{35 + \frac{100}{100}65} = 0.35$$

For 50% pore filling,
$$\varphi_{Sio_2} = \frac{35}{35 + \frac{50}{100}65} = 0.51$$

For 25% pore filling,
$$\varphi_{Sio_2} = \frac{35}{35 + \frac{25}{100}65} = 0.68$$

Percentage of pore filling

Silica particles contain 65% of free space, and 35% of dense silica matrix.

Nanoporous silica => x grams $\rho_{SiO_2} = 2.2 \text{ g/cm}^3$ DEMA-OMs => y cm³

Dense volume = x g/2.2 gcm⁻³ From above: Free space/Dense volume = 65/35 = Free space = 65/35 (x g/ 2.2 gcm⁻³)

Hence, the amount of DEMA-OMs (in cm³) required for complete pore filling (i.e. 100% pore filling) would be

y =
$$\frac{65 (x/2.2)}{35}$$
 => 0.8441 · x (cm³)

Amount of DEMA-OMs required 200% pore filling	$=> y = 1.6882 \cdot x (cm^3)$
Amount of DEMA-OMs required 50% pore filling	$=> y = 0.422 \cdot x (cm^3)$
Amount of DEMA-OMs required 25% pore filling	$=> y = 0.211 \cdot x (cm^3)$

Conductivity of silica gels (σ_{NMR})

 $\Lambda_{NMR} = \frac{F^2}{RT}_{(D^++D^-)}$

Moles of ionic liquid Molarity (M) = Volume of ionic liquid x 1000 / litre

 $\frac{Mass of ionic liquid}{Molecular weight}$ $= \overline{Volume of ionic liquid} \ge 1000 / \text{litre}$

 $Molarity (M) = \frac{Density (\rho)}{Molecular weight} \ge 1000 / litre$

 $\sigma_{NMR} = \Lambda_{NMR M} \cdot \text{ionicity}$

Faraday's constant (F) = 96485.3365 s A / mol Gas constant (R) = 8.31446 J/Kmol Room temperature (T) = 298 K Density (ρ) g/cm³ Diffusion coefficients (D) m²/s Molarity (M) moles/litre Molar conductivity (Λ_{NMR}) S.cm²/mol Conductivity (σ_{NMR}) mS/cm Ionicity = 0.6 (from reference 32)