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Abstract 1), the Bagnold scaling predicted by kinetic theary~ 72,
well describes the flow behavior. In such@mammed state
In this Electronic Supplementary Information (ESI), weprahe shear stress goes to zero in a quasi-static liynit; 0,
vide the supplementary information about the manuscript. Whereglassy dynamicef granular particles have been exten-
Sec. 1, we summarize the rheology of dense granular matsiely investigated [19—-26]. On the other hand, it remains
als and explain a continuum theory proposed by Savage fiite above the critical densityy > ¢. (the solid line in Fig.
In Sec. 2, we derive a theoretical expression of the spectriijnso that the system exhibits tyeeld stress where many
of non-dfine velocities. In Sec. 3, we clarify theflirence constitutive models for suchygelding(or jammed statehave
between usual energy cascade and the cascade of kinetikyeen proposed, e.g. thel rheology [27-33], non-local mod-
ergy observed in dense granular flows. In Sec. 4, we shel for slow flows [34—36], and order-parameter descriftion
some supplementary data of molecular dynamics (MD) sinfor fluid-solid coexistent flows [37—45]. Note that the shear
lations. stress of jammed granular materialgase-independenin a
quasi-static regimey < 1, i.e. the so-calledritical-statein
soil mechanics [46], while the rate-dependent kinetic cont
1 Dense granular rheology bution to the shear stress becomes important in a rapid-flow
regime (Fig. 1). In addition, the discontinuous shear thick
In this section, we briefly introduce the rheology of gramulgng, i.e. a jump from unjammed state to yielding state, is als
materials and continuum descriptions of dense granulasfloyossible for frictional granular materials [47—51].
Especially, we focus on a continuum theory proposed by Sav-
age [1], where usual hydrodynamic equations (Secs. 1.1 and
1.2) with a constitutive model characteristic of dense glan
flows (Sec. 1.3) are explained in detail. We discugtedi
ent models of pair correlation function at contact (Sec),1.4
which is an ingredient of the constitutive model, and vakda
the hydrodynamic equations by MD simulations (Secs. 1.5-
1.7).
The rheology of granular materials is strongljeated by
the volume fraction (or area fraction in two dimensions) of
granular particlesgy [2-8]. If the fraction is sfficienty [ .
small, the system behaves like a gas, whdretic theory 7
succeeds in describing the flow behavior [9-17]. However,
if the fraction exceeds a critical valuepntact forcebetween Eigyre 1: (Color online) A sketch of flow curves of granu-
granular particles also contribute to the flow propertie$gl  |ar materials (in a double logarithmic scale): In unjammed
Figu_re 1 displays a sketch @bw curve_sof granular materi- statego < ¢ (the dotted line), the Bagnold scaling,~ 72,
als, i.e. the shear stress, plotted against the shear rage, ‘ye|| describes the flow behavior, while the system exhibits
Below the critical densitygo < ¢ (the dotted line in Fig. finite yield stress in yielding (or jammed) statgg > @
“Faculty of Engineering Technology, MESAUniversity of Twente, (the SOIId_ line).  In quasi-static r_eglme/, _<< 1, the shear
Drienerlolaan 5, 7522 NB, Enschede, The Netherlands. H:ma$tress of jammed granular materialgase-independenthe
k.saitoh@utwente.nl solid line), while the rate-dependent kinetic contribatim
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1.1 Savage’s continuum theory the model of granular particles in MD simulations. For ex-

ample, the shear rate, is nondimensionalized as= ytp,.

To_describe the complipated rheology of dense granular en, we nondimensionalize the stress tensor, pressute, an
terials, we adopt a continuum theory proposed by Savage atflux asri; = (v/e)dij, p = (v/€)P, andg; = (Chntm/€)Gi,

In his original paper, Ref. [1], he considered granular ﬂd]wsrespectively, where = d2 ands = m(dm/tm)? are the par-

two-dimension, where the density of granu_lar particlesghih icle area and an energy unit, respectively. The transmort ¢
and the shear rate applied to the system is very small so

the basic assumption of kinetic theory (i.e. binary calisi Eients and dissipation rate are also nondimensionalized as
P y (L€ y n = (tm/m7, € = (tm/M)é, k = thk, and? = tyd, respec-

?nldtithr? n;orleculﬁr dchnaos) Irs r\\/lc;la:t?ld\.NTohprO\gdetcxgmtltively_ Therefore, introducing a dimensionless time deriv
?? gﬂs 0 SlucTh elset'g a :Jat. ? S, he adoF% - ive, d/dt = tnd/ot, dimensionless coordinates= %/dy, and
clated flowrule 1hepiastic potentials assumed to be equay, _ ¥/dm, and dimensionless gradie®;, = dn,V;, we nondi-

to theyield f_unct|on|n _the mean-stress and stresﬁf@ence mensionalize the hydrodynamic equations (1)-(3) as
plane. In soil mechanics, it is known that the associated flow

rule is quite useful if the principal axes of stress and strai D¢

(rate) coincide. Adopting the von Mises type yield criterio Dt —¢Viui, (6)

(i.e. the yield function is given by a circle) andigirentiating Dy

the plastic potential, he derived hydrodynamic equatians f Dt Vioij , )
compressive and frictional granular materials. In his thigo Do

transport cofficients are formulated such that they are con- ¢ﬁ = 0oyVilj = ViG —x , (8)
sistent with the kinetic theory of two-dimensional gramula

gases [11]. respectively, where we have introduced the dimensionless

The hydrodynamic equations derived by Savage inclugiéterial derivativeD/Dt = 4/t + uiV;, and dimensionless
the continuity equation, equation of momentum consermati¢nergy dissipationy = ¢6,. Here, the hydrodynamic fields

and equation of granular temperature as are nondimensionalized as the area fractiprs; vn, dimen-
sionless velocity fieldy; = (tm/dm)0i, and dimensionless

D_Fj — _pﬁigi (1) granular temperaturé,= T/, respectively.
Dt ’
D ~ I

ror = Vidis (2) 1.3 Constitutive models

nD—-[ _ &ijﬁiaj —Vibi-7. ©) To close the (c_iimensiqnless) hydrodynamic equations, we
Dt need to determine functional forms of pressure, transmart ¢

respectively. Here, hydrodynamic fields are introducedas €fficients, and energy dissipation bgnstitutive models

mass densityp = mn velocity field, i, and granular tem-  Constitutive models for granular gases are well estaldishe
perature,T, wherem, n, andi (= %, §) represent the partideby kinetic theory of inelastic particles [9—17], where tham
mass, number density, and each coordinate, respectively.®r density is assumed to be small (or the particléngss is
the right-hand-sides, the Einstein convention is usedHer suficiently high) so that the duration of contact between gran-
subscriptsj andj (= %, §). On the left-hand-sides, the mateular particles can be neglected. In this case, the (dimensio
rial derivative is defined aB/Df = 9/4t + G;V; with the time less) pressure is determined by the kinetic contribution,
derivative,d/ot, and gradientﬁi. Constitutive relations for

the stress tensaw;j; and heat fluxg; are given by the usual Pin = [1+ (1 +€)C(¢)] 96, ©)

forms, wheree is the normal restitution cdigcient of granular parti-

Fij = ﬁ(%iaj + ﬁjui) +6ij (g - ﬁ) Vili - 6;p, (4) clesand the pair correlation functioB(¢), is given in later
~ e (Sec. 1.4). Similarly, the (dimensionless) bulk viscaosityear
G = —kuiT, ®) viscosity, thermal conductivity, and energy dissipatior a

respectively = & §), where the pressure, shear viscositgiven by

bulk viscosity, and thermal conductivity are introduceddas

71, £, and«, respectively. Note that the last term on the right- &in = aG(¢)p0"? (10)

hand-side of Eq. (3), i.a = nTZ, represents thenergy dissi- Min = [a,,G(qﬁ) +b,G(¢) " + c,,] p6Y2 (11)

pationin the bulk due to inelastic interactions between gran- : 1 12

ular particles, wheré is defined as a dissipation rate. Kdn = [aKG(¢) +bG(9) " + CK] AR (12)
xin = a,G(¢)pd%?, (13)

1.2 Nondimensionalization . . : :
respectively, with the constants listed in Table 1 [11].

We introduce scaling units of mass, length, and time as thén dense granular flows, however, the duration of contact
particle massm, mean diameter;,,, and microscopic time cannot be neglected such that contact forces between granu
scale tn, = nn/kn, respectively, wher&, andn, are respec- lar particles also contribute to the stress. To include sach
tively the normal spring constant and viscosity ffiméent for tact contributions to the hydrodynamic equations, we adopt
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Table 1: Constants for the kinetic contributions to the$ranF|gure 2: (Color online) Three flerent models of pair cor-

. Lo ) relation function at contacG(¢), where the red solid, green
port codiicients and energy dissipation, Eqs. (10)-(13). broken, and blue dotted lines represent the Carnaharirgtarl

model, Ges(¢), free volume theoryGey(¢), and global fit-

constitutive model proposed by Savage [1]. In this model, thnd: Gar(4), i.e. Egs. (24)-(26), respectively, as listed in the
pressure includes the contact contribution as legend.

P = P + Peon » (14) such that Egs. (16)-(19) converge to the kinetic parts, Egs.

(10)-(13), respectively (e.¢ — &qin), In the limit of zero
contact pressurgy.on — 0 (or the onset ofinjamming ¢ —

— $o).
Pcon = @0 IOg (u) . (15)

P — ¢
. . . 1.4 Pair correlation functions
The contact part is zero if the area fraction correspondseo t _ .
critical value, i.e¢ = ¢c, while it diverges if the area fraction!n Savage’s theory, there are several choices optiecor-
approaches the maximum, i¢.— ¢... Therefore, it should relation function at contagtG(¢), which is an ingredient of
be noted that the model can be used in the range betwl¥hdimensionless functions, Eq. (20)-(23). Here, we exam-
de < ¢ < de. In Eq. (15),a0 represents a reference value dhe three diferent models of pair correlation function at con-
pressure which we use as a fitting parameter (see Sec. 1.6fct, i.e. theCarnahan-Starling modeffree volume theory
In Savage’s model, the transport Gdgents and dissipa- andglobal fitting defined as

where the contact part is defined as

tion rate are also modified to include both kinetic and con- #(16— 7¢)
tact contributions: The bulk viscosity, shear viscosigrmal Ges(#) 1600 ° (24)
conductivity, and energy dissipation are given by N
) . Grv(e) = [(L+e)(Voalo—1)] (25)
= —_— 1 —
g fo(¢)62/2 (16) Ggr(¢) = Ges(¢) + Grv(¢) — Ges(9) . (26)
y = P an 1+ exp|—(¢ — ¢1)/my]
f]](¢)91/2 | : H i
p respectively [42]. It is known that the Carnahan-Starling
K= fen (18) model,G¢s(¢), underestimates the pair correlations in dense
8 12 systems, while the free volume theoBgy(¢), overestimates
Y = po , (19) them in dilute systems. Thus, the global fittinGgr(¢),
fr () proposed by Luding [52], smoothly connects the Carnahan-

Starling model in low density to the free volume theory in
high density, where the fitting parametegs, = 0.7 and
m; = 1072, are conventionally used [52].

Figure 2 displays the threeftirent models of pair corre-
1+ (1+ €)G(¢) lation function at contact, i.65¢cs(¢), Grv(4), and Ggr(¢),

respectively, where all the quantities have kinetic andain
parts through the complete form of pressuyses p«in + Peon-
In Egs. (16)-(19), dimensionless functions are introdweed

fe(¢) G (20) where the normal restitution cfiient of granular particles,
i‘i (1+9G(6) e = 0.7, and maximum area fractiog,, = 0.9, are used in the
f,(¢) = = , (21) free volume theory, Eq. (25). The constitutive model of pres
a,G(¢) + b,G(¢) ™ + ¢, sure, Egs. (14) and (15), can be used in the range betweer
f(f) = 1+ (1+e)G(¢) (22) $c<¢ <0, where a large dierence between the Carnahan-
8 a.G(¢) + bG(p) L +c,’ Starling model and free volume theory exists (Fig. 2) ang onl
1+ (1+eG(¢) the global fitting can describe the transition from one to an-
fe(9) = W ’ (23) other (around the transition density,= ¢;). Therefore, we



employ the global fitting as the model of pair correlationdun e ptm P be  &f m; ao/kn

tion at contact, i.eG(¢) = Ggr(¢), in the manuscript. In Sec. 07 05 08 09 07 102 325x10°2
2.3, we examine the dependence of our theoretical expressio
for the spectrum on the model of pair correlation function at

contact. Table 2: Parameters for MD simulations, the models of pair
correlation function at contact, and the constitutive niode
1.5 Homogeneous solution used in the manuscript, wheggum, d¢, ¢, @5, M¢, andag are

the normal restitution cdicient, microscopic friction cdé-
The dimensionless hydrodynamic equations (6)-(8) have a bient, critical area fraction, maximum area fraction, gigion
mogeneous solution, density, fitting parameter fdBgr(¢), and reference value of

contact pressure, respectively.
(¢, Ux, Uy, 6) = (o, SY: 0, 6b) , (27)

wheregy is a constant (or the mean area fraction) arthytn  grea fraction can be estimated #s~ 0.8, where the steady
is the scaled shear rate. The homogeneous granular tempgge stress suddenly increases aragid ¢ (see Sec. 1.7).
ture (or the mean granular temperaturg).is determined by | the models of pair correlation function at contact (Sec.
substituting Eq. (27) to the equation of granular tempeeatu; 4), we have threéree parametersi.e. the maximum area
Eg. (8), which leads to the balance between extesn@bly fraction,¢.., for the free volume theory, Eq. (25), and two free
of energy(by simple shear deformations) aedergy dissi- parametersg; andmy, for the global fitting, Eq. (26). From
pation (due to inelastic interactions) & = y. From EGS. the previous studies of pair correlation function [42, 52%
(17) and (19), the mean granular temperature is found to&gentionally use., = 0.9, ¢¢ = 0.7, andm; = 1072,
6o = ST (d0)/ Ty(¢o)- In the constitutive model of dense granular materials (Sec.
If we neglect small fluctuations of the hydrodynamic fieldg 3y \ve have ditting parameteri.e. the reference value of
around the homogeneous solution, Eq. (27), the mean sh&gfiact pressurep, which we will determine from the fitting

stress is given by = s = sp/f,(4o)d,". Therefore, the o1 the numerical results of steady state stress (see SBc. 1.
mean shear stress is divided into the kinetic and contats par

aso = oyin + 0con because of the pressumg,= puin + Peons . .
where the contact part of mean shear stress is given by 1./ Macroscopic flow properties

a0 ( b — ¢C) To validate Savage’s theory, we compare theoretical predic

Ocon = log (28) tions of dense granular rheology with results of MD simula-
ACINCE) P = o tions. The hydrodynamic equations (6)-(8) can be applied to

Note that the contact parts of pressure and mean shear, stf8@4ned granular materialg (> ¢c) either in a quasi-static

Egs. (15) and (28), are independent of the shear rate, @g. tfegime, where the shear rate is very small and the stress be
arerate-independent comesrate-independen(the yielding state in Fig. 1), or in

a rapid-flow, where the shear rate is quite high and the rate-
dependent kinetic contribution to the stress becomes impor
1.6 Input parameters tant. Because the shear rate used in our MD simulations is

Before we validate the hydrodynamic equations (6)-(8) B§"Y small, we exami_ne the rate-independent contact _eontri

MD simulations, we summarize input parameters for MPHtion to the stress, i.@1con and aeon, Where the theoretical

simulations, the models of pair correlation function attegn Predictions are given by Egs. (15) and (28), respectively

(Sec. 1.4), and the constitutive model (Sec. 1.3), where th&irst, we examine the dependence of pressure and shea

parameter values used in the manuscript are listed in Tabl§%€ss on the mean area fractigp, In our MD simulations,
The dense granular rheology is governed by thedwntrol the contact contributions to the pressure and shear stress a

parametersi.e. the mean area fractioe, and scaled shearcalculated apity = (0xx + yy)/2 andoggy = (o + )/ 2,

rate,ytm, which we use in both MD simulations and the thedespectively, where the macroscopic stress tensgr(a. 5 =

retical analysis in Sec. 2. In our MD simulations, we have i#.Y). is defined as

troduced the twonaterial constantd.e. the normal restitution 1

codficient, e, and microscopic friction cagcient, uy, where Tap = 13 Z Foi T8 (29)

we fix them toe = 0.7 anduy, = 0.5 in the following analysis i<j

and confirm that our results are insensitive to the microiscop

friction coefficient in the range betweenl0< um < 0.5 (see With the system ared.”. In Eq. (29),fij = (fxij, fy;j) is

Sec. 4.2). Note that the tangential restitutionficient, e, the contact forcebetween the particles,and j, andrj; =

can be introduced as well, though we did not change its vallieij- 'vij) is the relative position defined ag = ri —r;

in our MD simulations. The flow behavior of dense graniith the particles’ positions;; andr;. Figure 3 displays the

lar materials drastically change around thitical area frac- IWe confirmed that the kinetic contribution to the strespis =~ 3.75x

tion, ¢¢, from unjammed stategg < ¢C) to _yielding Sta_t?S 104 andoyin ~ 3.75% 1075 at most in our MD simulation with the largest
(¢0 > ¢c). From our results of MD simulations, the criticakhear rateytm = 25x 10°2.




contact parts of (a) pressure and (b) shear stress in steady
states, where the theoretical predictions (the brokers)ine
well describe the results of MD simulations (the open cir-
cles) if we choose the reference value in Egs. (15) and (28)
asap = 3.25x 107k, (we give the dimension of the spring
constantk,, to the stresspcon ando¢on, and reference value,

ap). In this figure, both the pressure and shear stress discon-
tinuously increase from unjammed staigs< ¢, to yielding
statesgo > ¢¢, where the critical area fraction is estimated as
¢c ~ 0.8 (the vertical dotted lines in the insets).

Next, we discuss the dependence of pressure and shear
stress on the scaled shear rati,. Figure 4 shows the con-
tact parts of (a) pressure and (b) shear stress in steaég.stat
In this figure, the results of MD simulations (the open cisgle
are almostate-independerif the shear rate is small enough,
ytm < 1074, as the system is in a quasi-static regime, where
the agreement with the continuum theory (the broken lirges) i
fairly well if we use the same value af with that in Fig. 3.

Therefore, the continuum theory proposed by Savage [1]
well describes macroscopic flow properties of jammed gran-
ular materials ¢o > ¢¢) in a quasi-static regimey{, < 1),
where a good agreement with the results of MD simulations
and theoretical predictions is established if the refezamtue
in Egs. (15) and (28) is given by

102

10°

0.005

1 1
107 10°  10* 107

Ytm

1
10

Figure 4: The dependence of contact parts of (a) pressure,
Pcon: @and (b) shear stress.qn, On the scaled shear ratd;,.

The open circles are the results of MD simulations, where
the mean area fraction is fixed ¢ = 0.84. The broken
lines represent the theoretical predictions, Egs. (15) 28y

ap = 3.25x 1072k, . (30)

where we used the parameter values listed in Table 2.

(a) 0.025 T T T
-1
0.02 | ig:ﬁ 3 L '@@‘f Gﬁ ) )
< o | 0 o 2 A theoretical expression of the spec-
3 B ee 1 ¢ trum of non-affine velocities
O . 3 L L L / 7]
S 0.005 1 0.65 07 0.75 0.8 085 ‘I’ | In this section, we derive a theoretical expression of tleesp
; trum of non-dfine velocities from hydrodynamic equations
0 & - &2 of dense granular materials. Because the spectk(k), is
065 07 075 08 08 given by the Fourier transform of norfime velocity field su,
o our derivation includes the following procedures: (i) Assu
(b) 0.015 : : : ing that|ou| is small, we linearize the hydrodynamic equa-
10 . tions (6)-(8) around the mean velocity field. (i) We trans-
igﬁ £ ﬁ k form the linearized hydrodynamic equationsl{oearized hy-
ﬁ 0.01 107 F @ ,@ drodynamic} into the Fourier space. (iii) To determine the
\g igj 3 e | i Fourier component ofu, we solve the linearized hydrody-
3 e E ° i P namics byperturbation theory (iv) We use the scaled shear
o 0% oss 07 075 08 085 S ] rate, ytm, as an expansion parametey,for the perturbative
calculations. (v) We scale the energy dissipation and wave
0 & . &2 number ag¢ ~ €2 andk ~ ¢, respectively. (vi) Then, the
0.65 0.7 0.75 0.8 0.85

bo

Fourier component ofu, i.e. hydrodynamic modef non-
affine velocity field, is determined up to the first ordereof
Therefore, we finally obtain a theoretical expression of the

Figure 3: The dependence of contact parts of (a) pressuéigactrum,E(k), which is expanded into the power series of
Peon, @nd (b) shear stress¢on, 0N the mean area fractiogy.
The open circles are the results of MD simulations, where than Sec. 2.1, we linearize the hydrodynamic equations by
scaled shear rate is fixed n = 2.5 x 107°. The broken the procedures (i) and (ii). In Sec. 2.2, we solve the liresati

lines represent the theoretical predictions, Eqs. (15X28J1 hydrodynamics by the procedures (iii)-(vi). In Sec. 2.3, we
where we used the parameter values listed in Table 2.

€ = ¥ty and is truncated at the second ordee gfe. O(e?).

discuss the dependence of our theoretical expressi@l)f



on the mean area fractiofty, the models of pair correlation

\ Py = gt [1 +(1+e){Go+ ¢OG¢}] 6o
function,G(¢), and free parametersg, ¢¢, andg... D [1+(1+ e)deO] o
o | me = [Potio—pogg| 570"
2.1 Linearized hydrodynamics m = [Deé%/z _ %5/2 ] 65t
The dimensionless hydrodynamic equations (6)-(8) have the  y, = [pyf,o- po%] f30,°
homogeneous solution, Eq. (27), igr,t) = ¢q, 0(r,t) = p I T I P
6o, andu(r,t) = sye, wherey ande, are they-coordinate 0 70 KRR
and unit vector along the-axis, respectively. Here, the mean df,  _ @+9@,G, +°”,)1_ Gy
: ) do (8,Go+b, Gyt +c,)? 4
granular temperature is determined as df, Gy
dg 3G}

_ a,G(9) + b,G(¢)t+c, &
a 167-3/2G(¢) 1-¢?

6o (31)

Table 3: Derivatives i

from Eq. (8). Then, we introduce small fluctuations arour¥1€reGo = G(o), fro

the homogeneous solution as dG(¢)/dlg=g,-

n the Taylor expansions, Eqgs. (35)x(3
fy(¢0), fro = fu(do), andGy =

p(r.t) = ¢o+0g(r.t), (32) follows:
o(r,t) = 6o+ 060(r,t), (33)
B Vo (S'7¢Vy — Py V)0 + (3’79Vy — PyVx)0
u(r,t) = syec+6u(r,t), (34) 5 5
+ (MY + &V)ouy + £V Vyduy ,
wheresu(r,t) = (dux, 6uy) is equivalent to th@on-gfine ve- Vioyj = (575Vx = PsVy)od + (S79Vx — PaVy)56
loc,lt-y ftleld - ) cosity and +  (10V? + £V5)oUy + £V VyUy
irst, we expand the pressure, shear viscosity, and energy _,
dissipation (which are the functions ¢fandé) into the series g}'ljv'u‘ * M+ 77"’326¢ + 108700
of small fluctuations as +  (2s70Vy — PoVx)oUx + (25770Vx — PoVy)oUy ,
Vig = —K0V259 .
o~ + Pydd + Pedl + ... , 35 . . . . .
P Po+ Py0¢ + By (35) In the following, we introduce cdicients associated with the
no= 10+ 1g0h + 10900 + .. (36) palance between exterralpply of energipy simple shear de-
X = X0+ Xp00 + xeo0 + ..., (37) formations anenergy dissipatiodue to inelastic interactions

as
respectively, wher@o, no, andyo are the values for the homo-

geneous solution, i.@. = ¢o andéd = 6y, and explicit forms of Ao
the derivativesp,, nq, andy, (@ = ¢, 0) are listed in Table 3. Ay
Because we use the global fitting, Eq. (26), for the model of A

pair correlation function, its derivative in Table 3 is givby

dG(¢)/d¢ = dGgr(a)/ds with where all the second

tional to the inelastic

dGgr  dGcs

dp — do dynamic} as

dG dG dG dG Gry—-G o—¢

(5 - %5+ (8 - e =)o 2 v -

’

1+ expl-(o - or)/mi])’

oou
—Z 4 eyV,SUy

(38) ot
dG b "
d;V = 5, (39) aou,

2(1+ )¢ (Vold - 1) 0 TV =
1+ +

dd6CS — 1 83 , (40)
¢ ( h ¢) E + EyVX69 ~
where we omit the arguments,#), for the three diferent 4

models Ggr(¢), Grv(4), andGes(¢).
Second, we linearize the hydrodynamic equations (6)-(8)

= 7S —xo, (41)
= 7S —Xo - (42)
= 7]932 —Xo > (43)

terms on the right-hand-sides are propo
ity o 1 - € (@ = 0,¢,6). Then, we

find linearized hydrodynamic equations (mrearized hydro-

—poVidu; , (44)

(s16Vy = Py V)¢ + (S76Vy — PaV )50
(702 + £V2)5Uy + (£0VxVy — 96Uy,  (45)
(516 Vx = PsVy)og + (S76Vx — PyVy)50
110V + £0V2)0Uy + EoVxVydUy (46)
1560 + (g + KoV2)60

(2970Vy - 50VX)5UX + (2970VX - 50Vy)6uy ,
(47)

around the homogeneous solution. For example, each tevhere we introduced scaled quantitiespas= p,/¢o, .;—To =
on the right-hand-sides of Eqgs. (7) and (8) is linearized &§ o, 7o = 17o/b0, ko = ko/¢o, andA, = A, /do (@ = 0, $, 6).



Assuming that non{&ine velocities are isotropic in spacerespectively, where the matrices in Eq. (52) are given by
we seek normal mode solutions of the small fluctuations, i.e.

6 = ope®-V, 50 = 6680V, su, = iste® N, and 8 8 8 ¢od
suy = i60,e®-“Y with the wave number, frequency,w, My = 0 o o polq , (56)
and imaginary unitj. Then, the linearized hydrodynamics, — 5a 0 _0
Egs. (44)-(47), are reduced to an eigenvalue problem, —Psq —Ped
0 0 0 0
0 = —iw 48 A, Ap— ko2 —200
Lo =-lwg, (48) M, = Ay Ag—KoC 2_770(231 0 67)
. . o . ned  med —100 0_
where the right-eigenvector is defined by tmgdrodynamic 0 0 0 —(0 + E) P
modesasg = (¢, 66, 60, 60y)" and the 4x 4 hydrodynamic B ‘
matrixis given by with the scaled quantity\, = Aq/¢o (@ = ¢,6).
o _ 0 , 0 Pok 2.2.1 The 1storder equation
L= /l¢ Ay — Kok —2370'( pok 49
| sk Sk —10K? -s (49) Substituting the power series, Egs. (52)-(55), into themig
-psk  —pok 0 —(770 + &0)k2 value problems, Egs. (48) and (50), we find that the first order
equations are given by
For later use, we also define the left-eigenvecigrof the A0 A0
hydrodynamic matrix as /A\/lll‘po = ‘”1| ‘fol : (58)
) IOM = o050, (59)

WL = —iwp . (50) _ _
respectively I = 1,2,3,4). Then, the four eigenvalues are

readily found to be

2.2 Perturbation theory W_ @_g P @3 60
wy’=w” =0, w’=-w;’ =J0do, (60)

To determine the hydrodynamic modes, we perturbatively

solve the eigenvalue problems, Egs. (48) and (50). Thempertji, a constant] = [2 + where the correspondin
bation theory which we adopt is well established for thedine . ) %oPs + Pobr, P g

stability analysis of granular gases under shear [53-5B}. é'ght' and left-eigenvectors are given by

cause the power-law behavior of the spectritk) ~ k=9/5, @él) = (0,0,1,0) , (61)

is observed in ajuasi-static regimeyt, < 1, we use the ) T

scaled shear rates, = yty, as a small parameter for our per- Yo = (_ Po/J, Py/ 3,0, 0) ’ (62)

turbative calculations, i.e= = s. If the system is in a steady ~(3)  _ 2197 pn/2] —bn/2]0Li/2 T 63

state, the external supply of energy by simple shear defor- 0 (%/ h Po/2J,~g0/ 2301/ ) T (63)

mations must be canceled out by the energy dissipation in o = (¢§/2J, Po/2J, _¢0/2Jq,_i/2) . (69)

the bulk such that the mean granular temperat@gestays

constant (it should be compared withermostatted systems@"

where the heat generated by the viscous heating is automati- lz,gl) - (¢op¢/32q, dope/J29, 1, 0) . (65)

cally removed from the system by the thermostats to keep the -2 5

temperature constant). Therefore, from the equation af-gra Yoo = (_ Po/J, ¢5/ 3,0, 0) ’ (66)

ular temperature, Eq. (8), we scale the energy dissipaton a 73 _ 1 0,/3.0. —i 67

x ~ s ~ €. In addition, we scale the wave numberkas e l{/&) (p¢/ o/, 3 ) ’ (67)

to understand the long wave-length behavior of the spectrum vy = (p¢/~l Po/J, 0, I) , (68)

Ih(in’ Ssia'ed foErms ollthe 4\/3vave nqrrlbleé,and dcoﬁ‘iments, respectively. Note that these eigenvectors satisfy tHodr-
« = 1S = Xo (EQs. (41)-(43)), are introduced as mality, i_e_wél)@()') =6; (j=1234).

K=eq, Ay =€Aqy, (51)
2.2.2 The 2nd order equation

(a = 0,9, 0), respectively [53-55]. the first and d ei | d ted 1
For the perturbative calculations of the eigenvalue prolg_ecagse (1)e Irs (gn Second eigenvalues are degenerate
10, i.ew;’ = w;” = 0, we rewrite the right-eigenvectors,

lems, Egs. (48) and (50), we expand the hydrodynamic -
trix, eigenvalue, right- and left-eigenvectors into thevpo g.(54), forl = 1.2 as

series of as o0 = a(j')ég) +ep +..., (69)
L = eMi+EMy, (52) wherea!" is the codicient for@) and the Einstein conven-
—iw = iewi+ Ewr+... (53) tion is used for the indexj = 1,2. Then, the second order

= Qo+ epr+EPrt..., (54) equation is found to be

Do+ €1+ +..., (55) M + Maa 3 = a3 (70)

<>
1l



If we multiply 43’ (h = 1,2) to the second order equarespectively. Then, substituting,;, a”, »{”, andg to Eq.
tion (70), the first term on the left-hand-side vanishesogsin(81), we find the first order right-eigenvector as

%h)Ml = 0) and the equation is reduced to
i Mo = wlal) (71)

where we used the orthonormality’ ¢4

¢ = (0,0,0,C)" (84)

with C = —(rr121a(11) + mzza(zl)) Po/(¢0J0). It is known that

= onj. Note that the other modesl (= 2,3,4) are immediately suppressed in

if we rewrite the matrix elements on the left-hand-side of Egranu|ar flows under Simp|e shear deformations [53_55]

(71) asmy; = 4 M3, Eq. (71) is explicitly written as

0} 0]
M1 Nk _ 0 79
(mzl mzz) (Zﬁ)) 2 (:22)) ’ 72
where each element is given by
_ _2770p0 Mo 2
mll - JZ ¢O ’ (73)
M = %(Pﬂ\e— PoALT
Petlg — Potly  KoPyPo
+ ( o~ T )q, (74)
2
My = — ¢3n0q’ (75)
PokoP,
me = D(puho-porg) - ZoRE. (76)

The two eigenvalues in Eq. (72) are readily found to be

1
o) = S(Mu+mea+F), (77)

1
o = S (e F) . (78)

In summary, the hydrodynamic modes truncated at the first
order ofe is derived as

~ 1) ~(j ~(1
GO = a0 1 g

T
= (-ped/apal/aab. ec) . (85)
where the normalized energy spectrug(k)/E(0) = 602 +
602, is given by

EK _ w2, 2~2
sy =+ ect. (86)
In the manuscript, we deno#? andal" asa;(q) anday(q),
respectively.

2.3 Parameter dependence

We examine the sensitivity of our theoretical expressiahef
spectrum, Eq. (86), to the mean area fractigy,the models

of pair correlation functions, Eqgs. (24)-(26), and the riti
parameter in Savage’s theory, Eq. (30). We also discuss the
dependence of our theoretical expression on the critieal ar

with F = +/(Mu1 — Mp2)? + 4mpamps, where the normalized fraction, éc, and maximum area fractiog,, which we have

eigenvector for the first eigenvaluel?, is given by

Mpo—my1—F
A/ 2
e ] : (79)

1)
§)-( =
% N sy

2.2.3 Hydrodynamic modes and the spectrum

To determine the first order right-eigenvecip ) "we multi-

already estimated from the numerical results of macroscopi
flow properties of dense granular materials (Sec. 1.7).

Figure 5 shows the dependence of the theoretical expres-
sion, Eg. (86), on the mean area fraction in the range between
dc < do < ¢, I.€. In ayielding state, where the global fitting,
Eqg. (26), is used for the model of pair correlation function,
i.e. G(¢) = Ggr(¢), and the parameters in Savage’s contin-
uum theory &, ¢¢, ande.,) are determined by the numerical
results of macroscopic flow properties as listed in Table 2.

ply 35765 (h = 3,4) to the second order equation (70), whelg this figure, there is no significant fiérence between the

we find
h) ~(1 ~(h) 7 (h ~()) 41
U.)(] )QD(] ) + QDO( )l,llo( )Mzgoo(')a(j ) =0. (80)

Therefore, the first order right-eigenvector is written as

1 N .
A A7) A g ~() AL
B = 3 T ARMED, (8
h=34 W1
where the matrix elementsy,; = z}(()h)Mzcﬁg), are given by
P
M1 = My = —ng121, (82)
%o
Po
Mgz = My2=—Mpy, (83)
o
2we used IO MZ) = WP and @I P00

@gh)wg)a?)éhj =0forj=12andh=34.

theoretical expressions withftkrent values of the mean area

fraction, as we have also confirmed in MD simulations that
the spectrum is quite insensitive to the mean area fraction i
the system is yieldingpo > ¢, in @ quasi-static regime.

Figure 6 displays the theoretical expressions with thesthre
different models of pair correlation functions, Eqgs. (24)-(26)
where the mean area fraction and scaled shear rate are fixed t
¢o = 0.84 andyt,,, = 2.5 x 107°, respectively, in both the MD
simulations and theoretical expression, Eq. (86), sudtthiea
system is yielding in a quasi-static regime. In this figuhe, t
theoretical expression is almost independent of the chafice
pair correlation functions, except for theffgirence in high
wave numberskd, = 3.

Figure 7 shows the dependence of the theoretical expres-
sion on the parameters introduced in Savage’s continuum the
ory, i.e. (a) the reference value of contact pressage,(b)



critical area fractiong., and (c) maximum area fractiof,,.

As shown in Fig. 7(a), the theoretical expression is ingesi

to the reference value (in the range betwed28< ag/k, <
0.125). However, it increases with the increase of criticabar
fraction fromg. = 0.70 to Q85 (Fig. 7(b)) and decreases with
the increase of maximum area fraction fram = 0.86 to
0.92 (Fig. 7(c)). Note that the maximum area fractign,,

are included not only in the constitutive model of pressure,
Peon (EQ. (15)), but also in the model of pair correlation func-
tion at contactGgr(¢) (Eq. (26)). Therefore, the values @f
andg., are important in our theoretical expression of the spec-
trum, though these values can be determined from the numer-
ical results of macroscopic flow properties of dense granula
materials (Sec. 1.7).

10°

k dln

10

Figure 5: (Color online) The theoretical expression of the
spectrum, Eq. (86), with ffierent values of the mean area
fraction, ¢, as listed in the legend, where the parameters in
Savage’s continuum theorgd, ¢, and¢.,) are listed in Ta-
ble 2. The global fitting model, Eq. (26), is used for the pair
correlation function, i.eG(¢) = Ggr(¢).

(a) 10°
— lo-l

10

E(k)/E(0

10

10° 10t

Figure 7: (Color online) The dependence of the theoretical e
pression, Eq. (86), on the parameters in Savage’s continuum

theory, i.e.ag, ¢¢, ande.,, where the mean area fraction and

10
‘ Carnahan-Starmz ° scaled shear rate are fixeddig = 0.84 andyt,, = 2.5x 107°,
Sl B N respectively: (a) The reference value of contact pressyre,
55/ increases as listed in the legend (in the unit of spring con-
~ stant, k,), where¢. = 0.80 and¢.,, = 0.90 are used. (b)
= 107 f The critical area fractionj., increases as listed in the legend
R and indicated by the arrow, whesg = 3.25 x 10k, and
108 | ¢ = 0.90 are used. (c) The maximum area fractign,
1(')1 12)0 ot increases as listed in the legend and indicated by the arrow,
kd.. whereag = 3.25 x 1072k, and¢. = 0.80 are used.

Figure 6: (Color online) The theoretical expression of the
spectrum, Eq. (86), with three ftkrent models of pair cor-
relation function at contacG(¢), where the red solid, green
broken, and blue dotted lines represent the Carnaharirgtarl
model,Gcs(¢), free volume theonGry(¢), and global fitting,
Ger(¢), i.e. Egs. (24)-(26), respectively (as listed in the leg-
end). The parameters in Savage’s continuum theagyd,
and¢..) are listed in Table 2. The open circles are the result of
MD simulations. In both the MD simulations and theoretical
expression, Eqg. (86), the mean area fraction and scaled shea
rate are fixed t@o = 0.84 andyt,, = 2.5 x 10°°, respectively.



3 The difference from turbulence fluids, where the rate of dissipationk?, increases with the
increase of wave numbers, and vice versa.
In this section, we describe the basic picture behind theFigure 8(a) shows a schematic picture of the usual energy
anomalous cascade of kinetic energy which we observectifscade in turbulence, where the energy injection at macro-
MD simulations. The decay of the spectrum is obviously diécopic scale induces large-scale eddies which furthergene
ferent from the usual energy cascade in two-dimensional tgialler size eddies. The nonlinear coupling dfetient wave
bulence, i.eE(K) ~ k3 [56]. To clarify such a dference, we numbers transfers the external supply of energy to smaller
first summarize the usual energy cascade (Sec. 3.1) and #fles without energy dissipation. At microscopic scale (t
explain a possible interpretation on the cascade of kiggtic Kolmogorov length~ 1)), the viscous heating is dominant
ergy in dense granular materials based on Refs. [57,58] (S the transferred energy is finally dissipated into heat. |

3.2). between the macro- and micro-scales, the power-law decay
of energy spectrum can be observed, &) ~ k> and
3.1 The usual energy cascade k=3 in three and two dimensions, respectively [56, 59].

To shortly explain the usual energy cascade, we first inted . .
the (incompressive) Navier-Stokes equation for the VQ}OCL:S'Z The cascade of kinetic energy in dense

field, u(r,t), as [59] granular materials

» In contrast to usual fluids, granular materials dissipatekth
DY = Po VP + VAU, (87) netic energy bynelastic interactiondetween the particles in
contacts [57, 58]. Because the contact forces in the normal

whereD/Dt = §/dt +u -V, po, p, andv = 1/po are the ma- 4nq tangential directions are modeled by the linear spring-
terial derivative, mass density (constant), pressure kamet dashpot, i.e.

matic viscosity, respectively. Because the Fourier corepbn

?r: prlfssqre its ginen bka=th—(pl3/k2_) th(kk- Ui ) (K’ ~t9k_kr(g7) _ fo = Koén—7nén, (91)
e Fourier transform of the Navier-Stokes equation is £ o 92
written as t ket — miét (92)
o N ) respectively, the inelastic interactions are caused bglaingp-
gtk = -1 Z(k Uk Ui = VK U, (88) ing forces Cnnéy and—niéy) which are proportional to thel-
kr

ative speedbetween the particles in contacts Andg,).
wherel, k (or k'), k = |k|, andu, are the imaginary unit, Figure 8(b) displays a schematic picture of the cascade
wave number vector, wave number, and the Fourier comgb-kinetic energy in dense granular materials under simple
nent of the velocity field, respectively. On the right-haside shear deformations. At macroscopic scale, the external sup
of Eq. (88), the first term representsanlinear couplingof ply of energy by simple shear deformations generates large-
the velocity fields with dierent wave numbersy_ andu,, scalecollective motiongor vortex-like structures) of granular
which induces the mesoscopic transport of kinetic energy, particles, e.g. as shown in Fig. 11(a), where relative speed

theenergy cascadevhere between the particles are quite small (because they move to-
s o gether) and thus the energy dissipation by inelastic intera
U = U —K (k : Uk') (89) tions is negligible. The large-scale collective motiondtice

. ) N ) ) smaller size collective motions as the kinetic energy issra
with the unit vectork = k/k, is perpendicular to the waveferred to smaller scales (from the blue to white regions @ Fi
number vectork, i.e. uj; is the transverse componentwy . 8(b)). At microscopic scale (about particle diameteth,),

The first term on the right-hand-side of Eq. (88) indicates thowever, granular particles cannot form vortex-like stnes
propagationof uy (because of the imaginary unlf) so that (qye to the size of their own) and they maemdomlyrather
the nonlinear coupling does not dissipate the kinetic gnerghgp, collectively (the red region in Fig. 8(b)), where rislat
In fact, the nonlinear couplingk( Ux—/)uy;, results from the speeds between them are considerably large so that the trans

pressure gradient and convection terminiartia, poDU/Dt,  fered kinetic energy is finally dissipated by inelastic iate
where both conserve the energy. However, the second tefighs.

—vk2u, represents theiffusionof u, which causes the energy
dissipation.

If the wave number is dficiently high,k > 1, the second
term on the right-hand-side of Eq. (88) is dominant. Thea, th
Navier-Stokes equation (88) is reduced to fiLdiion-type,

9
0 = —vkPuy , (90)

where the velocity field decays exponentiallyugse e,
This is the energy dissipation (@iscous heatingin usual
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@ numerical results of the PDFs of noffiae velocities with
different values of the control parameters, i.e. the mean arez
fraction, ¢o, and scaled shear ratg,,. In Sec. 4.2, we con-

Q firm that the statistics of nonfiine velocities, i.e. the PDFs,
Qog%gg correlation functions, and spectra, are quite insensitiibe
QO microscopic friction cogicient, upm, if the system is yielding
Q (¢o > ¢¢) in a quasi-static regime/t, < 1). In Sec. 4.3, we
examine the #ect of particle inertiaon the power-law decay
of the spectrum.

(energy supply) (energy transfer) (energy dissipation) 4.1 The dependence of the PDFs on the control
external force nonlinear coupling viscous heating p arameters

macro meso micro kim  Figure 9(a) displays the dependence of the PDFs on the mear
area fractiongg, where the PDFs of each compond?{su,)

with @ = X, y, are symmetric around zeréy, = 0) and well
correspond with each other (@ is the same) such that the
distribution of non-&ine velocities igsotropicin space. In

(b)

Q 9 this figure, the widths of the PDFs increase with while the
o 8 ©00 ,8%8' difference between them becomes quite small once the meat
5 area fraction exceeds the critical valye, > ¢, i.e. if the
O system is yielding (or jammed).

Figure 9(b) shows the dependence of the PDFs on the
scaled shear rateyt,, where the widths of the PDFs
monotonously increase with the decrease of scaled shear rat
(energy supply) (energy transfer) (energy dissipation) implying the growth of spatial correlations of nofitae ve-
locities in a quasi-static regimet,, < 1.

simple shear interactions between inelastic '
deformations collective motions interactions The dependence of the widths of the PDFs on the control
macro meso micro kd,, parameters should be compared with the results of spatial co

relation functions of non{éine velocities in the manuscript,
Figure 8: (Color online) (a) A sketch of the usual energy cashere the correlation length suddenly increases around the
cade, where the circles represeddiesrotating as indicated critical area fractiong. ~ 0.8, and it monotonously increases
by the arrows andtl;, is the wave number scaled by the Kolwith the decrease of scaled shear rate. Therefore, theaisere
mogorov lengthl,,. External forces at macroscopic scale iref the width is closely related to the growth of spatial ctare
duce large-scale eddies (in the blue region) which furteer g tions of non-#ine velocities.
erate smaller size eddies (in the white and red regions). The
nonlinear coupling of dferent wave numbers transfers the ki42 The dfect of microscopic friction on statis-
netic energy through the mesoscopic scales which is finally . "
dissipated by the viscous heating at microscopic scalg,. tics of non-affine velocities
(b) A sketch of the “kinetic energy cascade” in dense granufaigure 10 shows the dependence of the PIF¥&L,), corre-
materials, where the (filled) circles represent granulati-palation functionsC(r), and spectraE(k), on the threshold for
cles moving as indicated by the arrows &w}, is the wave the Coulomb friction, where the microscopic friction e
number scaled by the mean particle diametia, Simple cient varies fromu,, = 0.1 to 5. In Figs. 10(a) and (b), we
shear deformations at macroscopic scale induce large-seahfirm that the PDFs and correlation functions are quite in-
collective motiongin the blue region) which further generatgensitive to the microscopic friction if the system is yialy
smaller size collective motions (in the white region), \etthe in a quasi-static regimepg = 0.84 andyt,, = 2.5 x 107°). In
particle motions are random at microscopic scale (in the reddition, there is no significantftiéerence between the spec-
region). The interaction betweenfi@irent size of collective tra such that the power-law behavi@(k) ~ k™95, is well
motions transfers the kinetic energy through the mesoscogitained in the range betweerd & u, < 0.5 (Fig. 10(c)).
scales which is finally dissipated by the inelastic inteoanst
at microscopic scaley dn.

4 Supplementary data

In this section, we provide some supplementary data of MD
simulations for the manuscript. In Sec. 4.1, we show our
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Figure 9: (Color online) (a) The dependence of the PDFs on %10‘1 E
the mean area fractiopy, wheregg increases as listed in the >~
legend and indicated by the arrows. The scaled shear rate is %10'2 E
fixed to ytn, = 2.5 x 10°° and the dotted line represents a
Gaussian fit foP(6uy) with the smallest mean area fraction, 107 7
¢o = 0.70. (b) The dependence of the PDFs on the scaled 1(;.1 12)0 1ot
shear rateyt,,, whereyt,, decreases as listed in the legend kd,,

and indicated by the arrows. The mean area fraction is fixed

to ¢o = 0.84 and the dotted line represents a Gaussian fit feigure 10: (Color online) Eects of microscopic friction on
P(suy) with the largest shear ratgty, = 2.5 x 1073, In both  the (a) PDFs, (b) correlation functions, and (c) spectraofn
(@) and (b), the closed and open symbols repreBgit) and affine velocities, where the microscopic friction @oeient,
P(ouy), respectively, and the microscopic friction ¢deient ., increases as listed in the legend of (a). The dotted line

is given byum, = 0.5.

in (a) represents a Gaussian fit for the result of the smallest
microscopic friction cofficient, u, = 0.1. Here, the mean
area fraction and scaled shear rate are fixeghte 0.84 and

ytm = 2.5 x 1075, respectively.
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4.3 The dfect of particle inertia (a)

As shown in Sec. 3.1, thaertia plays a key role in the meso-
scopic transport of kinetic energy in usual turbulent flows.
However, the ffect ofparticle inertiaon the power-law decay
of the spectrum in dense granular materials is still unknown

To clarify the role of particle inertia, we carry out MD sim-
ulations withoverdamped dynamicdn the manuscript, we
numerically solved rigid body dynamics of each particle, i.
numerically integrated the equations of translationalraxa-
tional motions. Now, we addiscous forceso the equations
of motions as

mr';

Z fij — Luali » (93)

j#i

liwg = Zfij X Nij = Lrotwi (94)

j#i

(i,j = 1,...,N), where we have introduced viscosity coef}) R AP B AR ";«?m 1’;‘:«?} F2
. - . - . X N > o .S
ficients to the translational and rotational motionggsand s«,,%‘i‘* ;’E’ % fi',,v ;}3;.% 4 A F R ’5; Rt ;:?*4
. . . A > K5 <l
Lo, respectively. In these equations, the contact fageis NN L Y 5,; R N, g’y SRS S
. . . . b N < 7, X
modeled by the linear spring-dashpot model (as described in X ”“«%% 7R s er X féﬁ;‘ q '?’tﬁ
. . . . . +2 2\ A e T
the manuscript) and the particle angular veloeity,is driven 2 73 "'A*w § "; e X %ﬁ» *««:ﬁ:
. A X \ (2 ~ 4 : X
by the torque between the particles in contafgis,n;;, where 72 BN A \;‘I R 5«w NN R ,r;
nij = (ri — rj)/Iri — rjl is a unit vector parallel to the relative i 777 g«ﬁ"’ﬁv S '«?f‘&,‘ a2 f%&‘;
position. We set the particle mass,and the particle moment R R 2 : 'éyy’; "‘W 1‘& 5 :
. . . . f S ' ~ X A g
of inertia, I; o« m, to be zero and then numerically integrate ) f; LETRS X 2 R AT AR %A "R e
. AN TS A A=)
overdamped dynamics, R ST TS SN NN SR s N AR e ) s
apte St 4 AN Y 1
S *‘51.} S B S A A
by ‘4 o Sady 7 e RIS
F22N RN Y 1 ﬁg M ST yg‘b ¥ )::*f:f:" :A:)
i 1 RN A o SN £ AN S S EAE
. f 95 i 52 ha
i = lia ij > (95) 43 Y B R M A
j#i NS w;“ NSRS *«5_ f *“A*Ez* ¥
b4 Y <~ i ™ NS T P A
¢ 47’ AL A b ISR AR T YRR g I y
wi = g’l fi- X Nii , (96) ?WV 4 7 q 393“%_\ ) *A W AN N
rot l J " v A 11‘{& g ,q{\ 4N ‘ B
j#i 2‘ Ry <§Y V) 5 »E }:Y < ;::‘( :?:pv "Iﬁ:%’:a; ‘?"k‘} s
S M UE L - AT SN IRV e 3 \E L‘, ;
. . . . ?’Zﬁ %{ N w«;* % « O o »{’} VV*’
where we simply assume that the viscosityfoents are the A P R Sy, RN X A A
same{ira = {rot = 10’“‘};11-
: . Figure 11: lor onlin ial distributions of nofitae
We compare the overdamped dynamigs= |; = 0) with gure (Color online) Spatial distributions of no

the underdamped dynamic&{ = Ziot = 0) which we orig- velocities in steady states, where the color coordinatps re

inally used in the manuscript. Figure 11 shows spatial drg_sden:jthew (rjn?jgnltud_es sce;leotl) by thz maxgmém. T_he @
tributions of non-&ine velocities obtained by the (a) under-naerdamped dynamics an (b) overdampe ynamics are
damped dynamics and (b) overdamped dynamics, where Y Sd in MD simulations, where the mean area fraction, scaled

color coordinates are the same with that used in Fig. 1(b)s ar ratez and mlcrosc50 pic friction cbeient are fixed to
the manuscript. In this figure, we can see that the collectf®™ 0.82,7tm = 25x 107, andum = 0.5, respectively.
behavior of non-fiine velocities isextremely suppressed by

the overdamped dynamiesd thus turbulent-like structures

(e.g. large scale and small scale eddies) of néineveloci-

ties can be hardly observed. As a result, the spatial ctioela

function, C(r), quickly decay (Fig. 12(a)) and the spectrum,

E(K), does not show a clear power-law decay (Fig. 12(b)) if

we use the overdamped dynamics in MD simulations. There-

fore, the particle inertia is crucial for the mesoscopiosort

of kinetic energy in dense granular materials.
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