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Abstract

In this Electronic Supplementary Information (ESI), we pro-
vide the supplementary information about the manuscript. In
Sec. 1, we summarize the rheology of dense granular materi-
als and explain a continuum theory proposed by Savage [1].
In Sec. 2, we derive a theoretical expression of the spectrum
of non-affine velocities. In Sec. 3, we clarify the difference
between usual energy cascade and the cascade of kinetic en-
ergy observed in dense granular flows. In Sec. 4, we show
some supplementary data of molecular dynamics (MD) simu-
lations.

1 Dense granular rheology

In this section, we briefly introduce the rheology of granular
materials and continuum descriptions of dense granular flows.
Especially, we focus on a continuum theory proposed by Sav-
age [1], where usual hydrodynamic equations (Secs. 1.1 and
1.2) with a constitutive model characteristic of dense granular
flows (Sec. 1.3) are explained in detail. We discuss differ-
ent models of pair correlation function at contact (Sec. 1.4),
which is an ingredient of the constitutive model, and validate
the hydrodynamic equations by MD simulations (Secs. 1.5-
1.7).

The rheology of granular materials is strongly affected by
the volume fraction (or area fraction in two dimensions) of
granular particles,φ0 [2–8]. If the fraction is sufficiently
small, the system behaves like a gas, wherekinetic theory
succeeds in describing the flow behavior [9–17]. However,
if the fraction exceeds a critical value,contact forcesbetween
granular particles also contribute to the flow properties [1,18].
Figure 1 displays a sketch offlow curvesof granular materi-
als, i.e. the shear stress,σ, plotted against the shear rate, ˙γ:
Below the critical density,φ0 < φc (the dotted line in Fig.
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1), the Bagnold scaling predicted by kinetic theory,σ ∼ γ̇2,
well describes the flow behavior. In such anunjammed state,
the shear stress goes to zero in a quasi-static limit, ˙γ → 0,
whereglassy dynamicsof granular particles have been exten-
sively investigated [19–26]. On the other hand, it remains
finite above the critical density,φ0 > φc (the solid line in Fig.
1), so that the system exhibits theyield stress, where many
constitutive models for such ayielding(or jammed) statehave
been proposed, e.g. theµ-I rheology [27–33], non-local mod-
els for slow flows [34–36], and order-parameter descriptions
for fluid-solid coexistent flows [37–45]. Note that the shear
stress of jammed granular materials israte-independentin a
quasi-static regime, ˙γ ≪ 1, i.e. the so-calledcritical-state in
soil mechanics [46], while the rate-dependent kinetic contri-
bution to the shear stress becomes important in a rapid-flow
regime (Fig. 1). In addition, the discontinuous shear thicken-
ing, i.e. a jump from unjammed state to yielding state, is also
possible for frictional granular materials [47–51].

Figure 1: (Color online) A sketch of flow curves of granu-
lar materials (in a double logarithmic scale): In unjammed
state,φ0 < φc (the dotted line), the Bagnold scaling,σ ∼ γ̇2,
well describes the flow behavior, while the system exhibits
finite yield stress in yielding (or jammed) state,φ0 > φc

(the solid line). In quasi-static regime, ˙γ ≪ 1, the shear
stress of jammed granular materials israte-independent(the
solid line), while the rate-dependent kinetic contribution to
the shear stress becomes important in rapid-flow regime.
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1.1 Savage’s continuum theory

To describe the complicated rheology of dense granular ma-
terials, we adopt a continuum theory proposed by Savage [1].
In his original paper, Ref. [1], he considered granular flowsin
two-dimension, where the density of granular particles is high
and the shear rate applied to the system is very small so that
the basic assumption of kinetic theory (i.e. binary collisions
and the molecular chaos) is violated. To provide constitutive
relations for such dense granular flows, he adopted theasso-
ciated flow rule: Theplastic potentialis assumed to be equal
to theyield functionin the mean-stress and stress-difference
plane. In soil mechanics, it is known that the associated flow
rule is quite useful if the principal axes of stress and strain
(rate) coincide. Adopting the von Mises type yield criterion
(i.e. the yield function is given by a circle) and differentiating
the plastic potential, he derived hydrodynamic equations for
compressive and frictional granular materials. In his theory,
transport coefficients are formulated such that they are con-
sistent with the kinetic theory of two-dimensional granular
gases [11].

The hydrodynamic equations derived by Savage include
the continuity equation, equation of momentum conservation,
and equation of granular temperature as

Dρ
Dt̃

= −ρ∇̃i ũi , (1)

ρ
Dũi

Dt̃
= ∇̃ jσ̃i j , (2)

n
DT
Dt̃

= σ̃i j ∇̃i ũ j − ∇̃i q̃i − χ̃ , (3)

respectively. Here, hydrodynamic fields are introduced as the
mass density,ρ = mn, velocity field, ũi , and granular tem-
perature,T, wherem, n, andi (= x̃, ỹ) represent the particle
mass, number density, and each coordinate, respectively. On
the right-hand-sides, the Einstein convention is used for the
subscripts,i and j (= x̃, ỹ). On the left-hand-sides, the mate-
rial derivative is defined asD/Dt̃ ≡ ∂/∂t̃ + ũi∇̃i with the time
derivative,∂/∂t̃, and gradient,̃∇i . Constitutive relations for
the stress tensor, ˜σi j , and heat flux, ˜qi , are given by the usual
forms,

σ̃i j = η̃
(

∇̃i ũ j + ∇̃ j ũi

)

+ δi j

(

ξ̃ − η̃
)

∇̃l ũl − δi j p̃ , (4)

q̃i = −κ̃∇̃iT , (5)

respectively (l = x̃, ỹ), where the pressure, shear viscosity,
bulk viscosity, and thermal conductivity are introduced asp̃,
η̃, ξ̃, andκ̃, respectively. Note that the last term on the right-
hand-side of Eq. (3), i.e. ˜χ ≡ nTζ̃, represents theenergy dissi-
pation in the bulk due to inelastic interactions between gran-
ular particles, wherẽζ is defined as a dissipation rate.

1.2 Nondimensionalization

We introduce scaling units of mass, length, and time as the
particle mass,m, mean diameter,dm, andmicroscopic time
scale, tm ≡ ηn/kn, respectively, wherekn andηn are respec-
tively the normal spring constant and viscosity coefficient for

the model of granular particles in MD simulations. For ex-
ample, the shear rate, ˙γ, is nondimensionalized ass ≡ γ̇tm.
Then, we nondimensionalize the stress tensor, pressure, and
heat flux asσi j ≡ (υ/ε)σ̃i j , p ≡ (υ/ε)p̃, andqi ≡ (dmtm/ε)q̃i ,
respectively, whereυ ≡ d2

m andε ≡ m(dm/tm)2 are the par-
ticle area and an energy unit, respectively. The transport co-
efficients and dissipation rate are also nondimensionalized as
η ≡ (tm/m)η̃, ξ ≡ (tm/m)ξ̃, κ ≡ tmκ̃, andζ ≡ tmζ̃, respec-
tively. Therefore, introducing a dimensionless time deriva-
tive, ∂/∂t ≡ tm∂/∂t̃, dimensionless coordinates,x ≡ x̃/dm and
y ≡ ỹ/dm, and dimensionless gradient,∇i ≡ dm∇̃i , we nondi-
mensionalize the hydrodynamic equations (1)-(3) as

Dφ
Dt

= −φ∇iui , (6)

φ
Dui

Dt
= ∇ jσi j , (7)

φ
Dθ
Dt

= σi j∇iu j − ∇iqi − χ , (8)

respectively, where we have introduced the dimensionless
material derivative,D/Dt ≡ ∂/∂t + ui∇i , and dimensionless
energy dissipation,χ ≡ φθζ. Here, the hydrodynamic fields
are nondimensionalized as the area fraction,φ ≡ υn, dimen-
sionless velocity field,ui ≡ (tm/dm)ũi , and dimensionless
granular temperature,θ ≡ T/ε, respectively.

1.3 Constitutive models

To close the (dimensionless) hydrodynamic equations, we
need to determine functional forms of pressure, transport co-
efficients, and energy dissipation byconstitutive models.

Constitutive models for granular gases are well established
by kinetic theory of inelastic particles [9–17], where the num-
ber density is assumed to be small (or the particle stiffness is
sufficiently high) so that the duration of contact between gran-
ular particles can be neglected. In this case, the (dimension-
less) pressure is determined by the kinetic contribution,

pkin =
[

1+ (1+ e)G(φ)
]

φθ , (9)

wheree is the normal restitution coefficient of granular parti-
cles and the pair correlation function,G(φ), is given in later
(Sec. 1.4). Similarly, the (dimensionless) bulk viscosity, shear
viscosity, thermal conductivity, and energy dissipation are
given by

ξkin = aξG(φ)φθ1/2 , (10)

ηkin =

[

aηG(φ) + bηG(φ)−1
+ cη

]

φθ1/2 , (11)

κkin =

[

aκG(φ) + bκG(φ)−1
+ cκ

]

φθ1/2 , (12)

χkin = aχG(φ)φθ3/2 , (13)

respectively, with the constants listed in Table 1 [11].
In dense granular flows, however, the duration of contact

cannot be neglected such that contact forces between granu-
lar particles also contribute to the stress. To include suchcon-
tact contributions to the hydrodynamic equations, we adopta
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aξ =
4(1+e)
π3/2

aη =
1+e
π1/2

[

(1+e)(3e−1)
4(7−3e) +

2
π

]

bη =
2

π1/2(7−3e)

cη =
(1+e)(3e+1)
2π1/2(7−3e)

aκ =
1+e
π1/2

[

9(1+e)2(2e−1)
4(19−15e) +

4
π

]

bκ =
16

π1/2(1+e)(19−15e)

cκ =
6(2e2

+e+1)
π1/2(19−15e)

aχ =
16
π3/2 (1− e2)

Table 1: Constants for the kinetic contributions to the trans-
port coefficients and energy dissipation, Eqs. (10)-(13).

constitutive model proposed by Savage [1]. In this model, the
pressure includes the contact contribution as

p = pkin + pcon , (14)

where the contact part is defined as

pcon = a0 log

(

φ∞ − φc

φ∞ − φ

)

. (15)

The contact part is zero if the area fraction corresponds to the
critical value, i.e.φ = φc, while it diverges if the area fraction
approaches the maximum, i.e.φ → φ∞. Therefore, it should
be noted that the model can be used in the range between
φc < φ < φ∞. In Eq. (15),a0 represents a reference value of
pressure which we use as a fitting parameter (see Sec. 1.6).

In Savage’s model, the transport coefficients and dissipa-
tion rate are also modified to include both kinetic and con-
tact contributions: The bulk viscosity, shear viscosity, thermal
conductivity, and energy dissipation are given by

ξ =
p

fξ(φ)θ1/2
, (16)

η =
p

fη(φ)θ1/2
, (17)

κ =
p

fκ(φ)θ1/2
, (18)

χ =
pθ1/2

fχ(φ)
, (19)

respectively, where all the quantities have kinetic and contact
parts through the complete form of pressure,p = pkin + pcon.
In Eqs. (16)-(19), dimensionless functions are introducedas

fξ(φ) =
1+ (1+ e)G(φ)

aξG(φ)
, (20)

fη(φ) =
1+ (1+ e)G(φ)

aηG(φ) + bηG(φ)−1 + cη
, (21)

fκ(φ) =
1+ (1+ e)G(φ)

aκG(φ) + bκG(φ)−1 + cκ
, (22)

fχ(φ) =
1+ (1+ e)G(φ)

aχG(φ)
, (23)
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Figure 2: (Color online) Three different models of pair cor-
relation function at contact,G(φ), where the red solid, green
broken, and blue dotted lines represent the Carnahan-Starling
model,GCS(φ), free volume theory,GFV(φ), and global fit-
ting, GGF(φ), i.e. Eqs. (24)-(26), respectively, as listed in the
legend.

such that Eqs. (16)-(19) converge to the kinetic parts, Eqs.
(10)-(13), respectively (e.g.ξ → ξkin), in the limit of zero
contact pressure,pcon→ 0 (or the onset ofunjamming, φ →
φc).

1.4 Pair correlation functions

In Savage’s theory, there are several choices of thepair cor-
relation function at contact, G(φ), which is an ingredient of
the dimensionless functions, Eq. (20)-(23). Here, we exam-
ine three different models of pair correlation function at con-
tact, i.e. theCarnahan-Starling model, free volume theory,
andglobal fitting, defined as

GCS(φ) =
φ(16− 7φ)
16(1− φ)2

, (24)

GFV(φ) =

[

(1+ e)
( √

φ∞/φ − 1
)]−1

, (25)

GGF(φ) = GCS(φ) +
GFV(φ) −GCS(φ)

1+ exp
[

−(φ − φ f )/mf

] , (26)

respectively [42]. It is known that the Carnahan-Starling
model,GCS(φ), underestimates the pair correlations in dense
systems, while the free volume theory,GFV(φ), overestimates
them in dilute systems. Thus, the global fitting,GGF(φ),
proposed by Luding [52], smoothly connects the Carnahan-
Starling model in low density to the free volume theory in
high density, where the fitting parameters,φ f = 0.7 and
mf = 10−2, are conventionally used [52].

Figure 2 displays the three different models of pair corre-
lation function at contact, i.e.GCS(φ), GFV(φ), andGGF(φ),
where the normal restitution coefficient of granular particles,
e= 0.7, and maximum area fraction,φ∞ = 0.9, are used in the
free volume theory, Eq. (25). The constitutive model of pres-
sure, Eqs. (14) and (15), can be used in the range between
φc < φ < φ∞, where a large difference between the Carnahan-
Starling model and free volume theory exists (Fig. 2) and only
the global fitting can describe the transition from one to an-
other (around the transition density,φ = φ f ). Therefore, we
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employ the global fitting as the model of pair correlation func-
tion at contact, i.e.G(φ) = GGF(φ), in the manuscript. In Sec.
2.3, we examine the dependence of our theoretical expression
for the spectrum on the model of pair correlation function at
contact.

1.5 Homogeneous solution

The dimensionless hydrodynamic equations (6)-(8) have a ho-
mogeneous solution,

(φ,ux,uy, θ) = (φ0, sy,0, θ0) , (27)

whereφ0 is a constant (or the mean area fraction) ands= γ̇tm
is the scaled shear rate. The homogeneous granular tempera-
ture (or the mean granular temperature),θ0, is determined by
substituting Eq. (27) to the equation of granular temperature,
Eq. (8), which leads to the balance between externalsupply
of energy(by simple shear deformations) andenergy dissi-
pation (due to inelastic interactions) ass2η = χ. From Eqs.
(17) and (19), the mean granular temperature is found to be
θ0 = s2 fχ(φ0)/ fη(φ0).

If we neglect small fluctuations of the hydrodynamic fields
around the homogeneous solution, Eq. (27), the mean shear
stress is given byσ = sη = sp/ fη(φ0)θ1/2

0 . Therefore, the
mean shear stress is divided into the kinetic and contact parts
asσ = σkin + σcon because of the pressure,p = pkin + pcon,
where the contact part of mean shear stress is given by

σcon =
a0

√

fη(φ0) fχ(φ0)
log

(

φ∞ − φc

φ∞ − φ0

)

. (28)

Note that the contact parts of pressure and mean shear stress,
Eqs. (15) and (28), are independent of the shear rate, i.e. they
arerate-independent.

1.6 Input parameters

Before we validate the hydrodynamic equations (6)-(8) by
MD simulations, we summarize input parameters for MD
simulations, the models of pair correlation function at contact
(Sec. 1.4), and the constitutive model (Sec. 1.3), where the
parameter values used in the manuscript are listed in Table 2.

The dense granular rheology is governed by the twocontrol
parameters, i.e. the mean area fraction,φ0, and scaled shear
rate,γ̇tm, which we use in both MD simulations and the theo-
retical analysis in Sec. 2. In our MD simulations, we have in-
troduced the twomaterial constants, i.e. the normal restitution
coefficient,e, and microscopic friction coefficient,µm, where
we fix them toe= 0.7 andµm = 0.5 in the following analysis
and confirm that our results are insensitive to the microscopic
friction coefficient in the range between 0.1 ≤ µm ≤ 0.5 (see
Sec. 4.2). Note that the tangential restitution coefficient, et,
can be introduced as well, though we did not change its value
in our MD simulations. The flow behavior of dense granu-
lar materials drastically change around thecritical area frac-
tion, φc, from unjammed states (φ0 < φc) to yielding states
(φ0 > φc). From our results of MD simulations, the critical

e µm φc φ∞ φ f mf a0/kn

0.7 0.5 0.8 0.9 0.7 10−2 3.25× 10−2

Table 2: Parameters for MD simulations, the models of pair
correlation function at contact, and the constitutive model
used in the manuscript, wheree, µm, φc, φ∞, φ f , mf , anda0 are
the normal restitution coefficient, microscopic friction coeffi-
cient, critical area fraction, maximum area fraction, transition
density, fitting parameter forGGF(φ), and reference value of
contact pressure, respectively.

area fraction can be estimated as,φc ≃ 0.8, where the steady
state stress suddenly increases aroundφ0 = φc (see Sec. 1.7).

In the models of pair correlation function at contact (Sec.
1.4), we have threefree parameters, i.e. the maximum area
fraction,φ∞, for the free volume theory, Eq. (25), and two free
parameters,φ f andmf , for the global fitting, Eq. (26). From
the previous studies of pair correlation function [42, 52],we
conventionally useφ∞ = 0.9, φ f = 0.7, andmf = 10−2.

In the constitutive model of dense granular materials (Sec.
1.3), we have afitting parameter, i.e. the reference value of
contact pressure,a0, which we will determine from the fitting
for the numerical results of steady state stress (see Sec. 1.7).

1.7 Macroscopic flow properties

To validate Savage’s theory, we compare theoretical predic-
tions of dense granular rheology with results of MD simula-
tions. The hydrodynamic equations (6)-(8) can be applied to
jammed granular materials (φ > φc) either in a quasi-static
regime, where the shear rate is very small and the stress be-
comesrate-independent(the yielding state in Fig. 1), or in
a rapid-flow, where the shear rate is quite high and the rate-
dependent kinetic contribution to the stress becomes impor-
tant. Because the shear rate used in our MD simulations is
very small, we examine the rate-independent contact contri-
bution to the stress, i.e.pcon andσcon, where the theoretical
predictions are given by Eqs. (15) and (28), respectively1.

First, we examine the dependence of pressure and shear
stress on the mean area fraction,φ0. In our MD simulations,
the contact contributions to the pressure and shear stress are
calculated aspMD

con = (σxx + σyy)/2 andσMD
con = (σxy + σyx)/2,

respectively, where the macroscopic stress tensor,σαβ (α, β =
x, y), is defined as

σαβ =
1
L2

∑

i< j

rα,i j fβ,i j (29)

with the system area,L2. In Eq. (29), f i j = ( fx,i j , fy,i j ) is
the contact forcebetween the particles,i and j, and r i j =

(rx,i j , ry,i j ) is the relative position defined asr i j ≡ r i − r j

with the particles’ positions,r i andr j . Figure 3 displays the

1We confirmed that the kinetic contribution to the stress ispkin ≃ 3.75×
10−4 andσkin ≃ 3.75× 10−5 at most in our MD simulation with the largest
shear rate, ˙γtm = 2.5× 10−3.
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contact parts of (a) pressure and (b) shear stress in steady
states, where the theoretical predictions (the broken lines)
well describe the results of MD simulations (the open cir-
cles) if we choose the reference value in Eqs. (15) and (28)
asa0 = 3.25× 10−2kn (we give the dimension of the spring
constant,kn, to the stress,pcon andσcon, and reference value,
a0). In this figure, both the pressure and shear stress discon-
tinuously increase from unjammed states,φ0 < φc, to yielding
states,φ0 > φc, where the critical area fraction is estimated as
φc ≃ 0.8 (the vertical dotted lines in the insets).

Next, we discuss the dependence of pressure and shear
stress on the scaled shear rate, ˙γtm. Figure 4 shows the con-
tact parts of (a) pressure and (b) shear stress in steady states.
In this figure, the results of MD simulations (the open circles)
are almostrate-independentif the shear rate is small enough,
γ̇tm < 10−4, as the system is in a quasi-static regime, where
the agreement with the continuum theory (the broken lines) is
fairly well if we use the same value ofa0 with that in Fig. 3.

Therefore, the continuum theory proposed by Savage [1]
well describes macroscopic flow properties of jammed gran-
ular materials (φ0 > φc) in a quasi-static regime (˙γtm ≪ 1),
where a good agreement with the results of MD simulations
and theoretical predictions is established if the reference value
in Eqs. (15) and (28) is given by

a0 = 3.25× 10−2kn . (30)
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Figure 3: The dependence of contact parts of (a) pressure,
pcon, and (b) shear stress,σcon, on the mean area fraction,φ0.
The open circles are the results of MD simulations, where the
scaled shear rate is fixed to ˙γtm = 2.5 × 10−5. The broken
lines represent the theoretical predictions, Eqs. (15) and(28),
where we used the parameter values listed in Table 2.
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Figure 4: The dependence of contact parts of (a) pressure,
pcon, and (b) shear stress,σcon, on the scaled shear rate, ˙γtm.
The open circles are the results of MD simulations, where
the mean area fraction is fixed toφ0 = 0.84. The broken
lines represent the theoretical predictions, Eqs. (15) and(28),
where we used the parameter values listed in Table 2.

2 A theoretical expression of the spec-
trum of non-affine velocities

In this section, we derive a theoretical expression of the spec-
trum of non-affine velocities from hydrodynamic equations
of dense granular materials. Because the spectrum,E(k), is
given by the Fourier transform of non-affine velocity field,δu,
our derivation includes the following procedures: (i) Assum-
ing that |δu| is small, we linearize the hydrodynamic equa-
tions (6)-(8) around the mean velocity field. (ii) We trans-
form the linearized hydrodynamic equations (orlinearized hy-
drodynamics) into the Fourier space. (iii) To determine the
Fourier component ofδu, we solve the linearized hydrody-
namics byperturbation theory. (iv) We use the scaled shear
rate, γ̇tm, as an expansion parameter,ǫ, for the perturbative
calculations. (v) We scale the energy dissipation and wave
number asχ ∼ ǫ2 and k ∼ ǫ, respectively. (vi) Then, the
Fourier component ofδu, i.e. hydrodynamic modeof non-
affine velocity field, is determined up to the first order ofǫ.
Therefore, we finally obtain a theoretical expression of the
spectrum,E(k), which is expanded into the power series of
ǫ = γ̇tm and is truncated at the second order ofǫ, i.e.O(ǫ2).

In Sec. 2.1, we linearize the hydrodynamic equations by
the procedures (i) and (ii). In Sec. 2.2, we solve the linearized
hydrodynamics by the procedures (iii)-(vi). In Sec. 2.3, we
discuss the dependence of our theoretical expression ofE(k)
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on the mean area fraction,φ0, the models of pair correlation
function,G(φ), and free parameters,a0, φc, andφ∞.

2.1 Linearized hydrodynamics

The dimensionless hydrodynamic equations (6)-(8) have the
homogeneous solution, Eq. (27), i.e.φ(r , t) = φ0, θ(r , t) =
θ0, andu(r , t) = syex, wherey and ex are they-coordinate
and unit vector along thex-axis, respectively. Here, the mean
granular temperature is determined as

θ0 =
aηG(φ) + bηG(φ)−1

+ cη
16π−3/2G(φ)

s2

1− e2
(31)

from Eq. (8). Then, we introduce small fluctuations around
the homogeneous solution as

φ(r , t) = φ0 + δφ(r , t) , (32)

θ(r , t) = θ0 + δθ(r , t) , (33)

u(r , t) = syex + δu(r , t) , (34)

whereδu(r , t) = (δux, δuy) is equivalent to thenon-affine ve-
locity field.

First, we expand the pressure, shear viscosity, and energy
dissipation (which are the functions ofφ andθ) into the series
of small fluctuations as

p ≃ p0 + pφδφ + pθδθ + . . . , (35)

η ≃ η0 + ηφδφ + ηθδθ + . . . , (36)

χ ≃ χ0 + χφδφ + χθδθ + . . . , (37)

respectively, wherep0, η0, andχ0 are the values for the homo-
geneous solution, i.e.φ = φ0 andθ = θ0, and explicit forms of
the derivatives,pα, ηα, andχα (α = φ, θ) are listed in Table 3.
Because we use the global fitting, Eq. (26), for the model of
pair correlation function, its derivative in Table 3 is given by
dG(φ)/dφ = dGGF(φ)/dφ with

dGGF

dφ
=

dGCS

dφ
+

(

dGFV
dφ −

dGCS
dφ

)

+

(

dGFV
dφ −

dGCS
dφ +

GFV−GCS
mf

)

exp
[

− φ−φ f

mf

]

{

1+ exp[−(φ − φ f )/mf ]
}2

,

(38)

dGFV

dφ
=

√

φ∞/φ

2(1+ e)φ
(
√

φ∞/φ − 1
)2
, (39)

dGCS

dφ
=

1+ φ

8

(1− φ)3
, (40)

where we omit the arguments, “(φ)”, for the three different
models,GGF(φ), GFV(φ), andGCS(φ).

Second, we linearize the hydrodynamic equations (6)-(8)
around the homogeneous solution. For example, each term
on the right-hand-sides of Eqs. (7) and (8) is linearized as

pφ =
a0

φ∞−φ0
+

[

1+ (1+ e){G0 + φ0Gφ}
]

θ0

pθ = [1+ (1+ e)G0] φ0

ηφ =

[

pφ fη0 − p0
d fη
dφ

]

f −2
η0 θ

−1/2
0

ηθ =

[

pθθ
1/2
0 −

p0

2θ1/2
0

]

f −1
η0 θ

−1
0

χφ =

[

pφ fχ0 − p0
d fχ
dφ

]

f −2
χ0 θ

1/2
0

χθ =

[

pθθ
1/2
0 +

p0

2θ1/2
0

]

f −1
χ0

d fη
dφ =

(1+e)(2bηG−1
0 +cη)−aη+bηG−2

0

(aηG0+bηG−1
0 +cη)2 Gφ

d fχ
dφ = − Gφ

aζG2
0

Table 3: Derivatives in the Taylor expansions, Eqs. (35)-(37),
whereG0 ≡ G(φ0), fη0 ≡ fη(φ0), fχ0 ≡ fχ(φ0), andGφ ≡
dG(φ)/dφ|φ=φ0.

follows:

∇ jσx j ≃ (sηφ∇y − pφ∇x)δφ + (sηθ∇y − pθ∇x)δθ

+ (η0∇2
+ ξ0∇2

x)δux + ξ0∇x∇yδuy ,

∇ jσy j ≃ (sηφ∇x − pφ∇y)δφ + (sηθ∇x − pθ∇y)δθ

+ (η0∇2
+ ξ0∇2

y)δuy + ξ0∇x∇yδux ,

σi j∇iu j ≃ η0s2
+ ηφs2δφ + ηθs

2δθ

+ (2sη0∇y − p0∇x)δux + (2sη0∇x − p0∇y)δuy ,

∇iqi ≃ −κ0∇2δθ .

In the following, we introduce coefficients associated with the
balance between externalsupply of energyby simple shear de-
formations andenergy dissipationdue to inelastic interactions
as

λ0 ≡ η0s2 − χ0 , (41)

λφ ≡ ηφs2 − χφ , (42)

λθ ≡ ηθs
2 − χθ , (43)

where all the second terms on the right-hand-sides are propor-
tional to the inelasticity,χα ∝ 1 − e2 (α = 0, φ, θ). Then, we
find linearized hydrodynamic equations (orlinearized hydro-
dynamics) as

∂δφ

∂t
+ ǫy∇xδφ ≃ −φ0∇iδui , (44)

∂δux

∂t
+ ǫy∇xδux ≃ (sη̄φ∇y − p̄φ∇x)δφ + (sη̄θ∇y − p̄θ∇x)δθ

+ (η̄0∇2
+ ξ̄0∇2

x)δux + (ξ̄0∇x∇y − s)δuy , (45)
∂δuy

∂t
+ ǫy∇xδuy ≃ (sη̄φ∇x − p̄φ∇y)δφ + (sη̄θ∇x − p̄θ∇y)δθ

+ (η̄0∇2
+ ξ̄0∇2

y)δuy + ξ̄0∇x∇yδux , (46)

∂δθ

∂t
+ ǫy∇xδθ ≃ λ̄φδφ + (λ̄θ + κ̄0∇2)δθ

+ (2sη̄0∇y − p̄0∇x)δux + (2sη̄0∇x − p̄0∇y)δuy ,

(47)

where we introduced scaled quantities as ¯pα ≡ pα/φ0, ξ̄0 ≡
ξ0/φ0, η̄α ≡ ηα/φ0, κ̄0 ≡ κ0/φ0, andλ̄α ≡ λα/φ0 (α = 0, φ, θ).
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Assuming that non-affine velocities are isotropic in space,
we seek normal mode solutions of the small fluctuations, i.e.
δφ = δφ̂ei(ky−ωt), δθ = δθ̂ei(ky−ωt), δux = iδûxei(ky−ωt), and
δuy = iδûyei(ky−ωt), with the wave number,k, frequency,ω,
and imaginary unit,i. Then, the linearized hydrodynamics,
Eqs. (44)-(47), are reduced to an eigenvalue problem,

Lϕ̂ = −iωϕ̂ , (48)

where the right-eigenvector is defined by thehydrodynamic
modesasϕ̂ = (δφ̂, δθ̂, δûx, δûy)T and the 4× 4 hydrodynamic
matrix is given by

L =





























0 0 0 φ0k
λ̄φ λ̄θ − κ̄0k2 −2sη̄0k p̄0k

sη̄φk sη̄θk −η̄0k2 −s
−p̄φk −p̄θk 0 −(η̄0 + ξ̄0)k2





























. (49)

For later use, we also define the left-eigenvector,ψ̂, of the
hydrodynamic matrix as

ψ̂L = −iωψ̂ . (50)

2.2 Perturbation theory

To determine the hydrodynamic modes, we perturbatively
solve the eigenvalue problems, Eqs. (48) and (50). The pertur-
bation theory which we adopt is well established for the linear
stability analysis of granular gases under shear [53–55]. Be-
cause the power-law behavior of the spectrum,E(k) ∼ k−9/5,
is observed in aquasi-static regime, γ̇tm ≪ 1, we use the
scaled shear rate,s = γ̇tm, as a small parameter for our per-
turbative calculations, i.e.ǫ ≡ s. If the system is in a steady
state, the external supply of energy by simple shear defor-
mations must be canceled out by the energy dissipation in
the bulk such that the mean granular temperature,θ0, stays
constant (it should be compared withthermostatted systems,
where the heat generated by the viscous heating is automati-
cally removed from the system by the thermostats to keep the
temperature constant). Therefore, from the equation of gran-
ular temperature, Eq. (8), we scale the energy dissipation as
χ ∼ ηs2 ∼ ǫ2. In addition, we scale the wave number ask ∼ ǫ
to understand the long wave-length behavior of the spectrum.
Then, scaled forms of the wave number,k, and coefficients,
λα = ηαs2 − χα (Eqs. (41)-(43)), are introduced as

k = ǫq , λα = ǫ
2
Λα , (51)

(α = 0, φ, θ), respectively [53–55].
For the perturbative calculations of the eigenvalue prob-

lems, Eqs. (48) and (50), we expand the hydrodynamic ma-
trix, eigenvalue, right- and left-eigenvectors into the power
series ofǫ as

L = ǫM1 + ǫ
2M2 , (52)

−iω = iǫω1 + ǫ
2ω2 + . . . , (53)

ϕ̂ = ϕ̂0 + ǫϕ̂1 + ǫ
2ϕ̂2 + . . . , (54)

ψ̂ = ψ̂0 + ǫψ̂1 + ǫ
2ψ̂2 + . . . , (55)

respectively, where the matrices in Eq. (52) are given by

M1 =





























0 0 0 φ0q
0 0 0 p̄0q
0 0 0 −1
−p̄φq −p̄θq 0 0





























, (56)

M2 =





























0 0 0 0
Λ̄φ Λ̄θ − κ̄0q2 −2η̄0q 0
η̄φq η̄θq −η̄0q2 0
0 0 0 −(η̄0 + ξ̄0)q2





























,(57)

with the scaled quantity,̄Λα ≡ Λα/φ0 (α = φ, θ).

2.2.1 The 1st order equation

Substituting the power series, Eqs. (52)-(55), into the eigen-
value problems, Eqs. (48) and (50), we find that the first order
equations are given by

M1ϕ̂
(l)
0 = ω

(l)
1 ϕ̂

(l)
0 , (58)

ψ̂
(l)
0 M1 = ω

(l)
1 ψ̂

(l)
0 , (59)

respectively (l = 1,2,3,4). Then, the four eigenvalues are
readily found to be

ω
(1)
1 = ω

(2)
1 = 0 , ω

(3)
1 = −ω

(4)
1 = Jq/φ0 , (60)

with a constant,J ≡
√

φ2
0pφ + p0pθ, where the corresponding

right- and left-eigenvectors are given by

ϕ̂
(1)
0 = (0,0,1,0)T , (61)

ϕ̂
(2)
0 =

(

−pθ/J, pφ/J,0,0
)T

, (62)

ϕ̂
(3)
0 =

(

φ2
0/2J, p0/2J,−φ0/2Jq, i/2

)T
, (63)

ϕ̂
(4)
0 =

(

φ2
0/2J, p0/2J,−φ0/2Jq,−i/2

)T
, (64)

and

ψ̂
(1)
0 =

(

φ0pφ/J
2q, φ0pθ/J

2q,1,0
)

, (65)

ψ̂
(2)
0 =

(

−p0/J, φ
2
0/J,0,0

)

, (66)

ψ̂
(3)
0 =

(

pφ/J, pθ/J,0,−i
)

, (67)

ψ̂
(4)
0 =

(

pφ/J, pθ/J,0, i
)

, (68)

respectively. Note that these eigenvectors satisfy the orthonor-
mality, i.e.ψ̂( j)

0 ϕ̂
(l)
0 = δ jl ( j = 1,2,3,4).

2.2.2 The 2nd order equation

Because the first and second eigenvalues are degenerated to
zero, i.e.ω(1)

1 = ω
(2)
1 = 0, we rewrite the right-eigenvectors,

Eq. (54), forl = 1,2 as

ϕ̂(l)
= a(l)

j ϕ̂
( j)
0 + ǫϕ̂

(l)
1 + . . . , (69)

wherea(l)
j is the coefficient for ϕ̂( j)

0 and the Einstein conven-
tion is used for the index,j = 1,2. Then, the second order
equation is found to be

M1ϕ̂
(l)
1 +M2a(l)

j ϕ̂
( j)
0 = ω

(l)
2 a(l)

j ϕ̂
( j)
0 . (70)
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If we multiply ψ̂
(h)
0 (h = 1,2) to the second order equa-

tion (70), the first term on the left-hand-side vanishes (since
ψ̂

(h)
0 M1 = 0) and the equation is reduced to

ψ̂
(h)
0 M2ϕ̂

( j)
0 a(l)

j = ω
(l)
2 a(l)

h , (71)

where we used the orthonormality,ψ̂(h)
0 ϕ̂

( j)
0 = δh j. Note that

if we rewrite the matrix elements on the left-hand-side of Eq.
(71) asmh j ≡ ψ̂(h)

0 M2ϕ̂
( j)
0 , Eq. (71) is explicitly written as

(

m11 m12

m21 m22

) (

a(l)
1

a(l)
2

)

= ω
(l)
2

(

a(l)
1

a(l)
2

)

, (72)

where each element is given by

m11 = −2η0pθ
J2
− η0

φ0
q2 , (73)

m12 =
pθ
J3

(pφΛθ − pθΛφ)q
−1

+

(

pφηθ − pθηφ
φ0J

−
κ0pφpθ

J3

)

q , (74)

m21 = −2φ0η0

J
q , (75)

m22 =
φ0

J2
(pφΛθ − pθΛφ) −

φ0κ0pφ
J2

q2 . (76)

The two eigenvalues in Eq. (72) are readily found to be

ω
(1)
2 =

1
2

(m11 +m22 + F) , (77)

ω
(2)
2 =

1
2

(m11 +m22 − F) , (78)

with F ≡
√

(m11 −m22)2 + 4m12m21, where the normalized
eigenvector for the first eigenvalue,ω(1)

2 , is given by

(

a(1)
1

a(1)
2

)

=





















m22−m11−F√
(m22−m11−F)2

+4m2
21

− 2m21√
(m22−m11−F)2

+4m2
21





















. (79)

2.2.3 Hydrodynamic modes and the spectrum

To determine the first order right-eigenvector, ˆϕ
(1)
1 , we multi-

ply ϕ̂(h)
0 ψ̂

(h)
0 (h = 3,4) to the second order equation (70), where

we find2

ω
(h)
1 ϕ̂

(1)
1 + ϕ̂

(h)
0 ψ̂

(h)
0 M2ϕ̂

( j)
0 a(1)

j = 0 . (80)

Therefore, the first order right-eigenvector is written as

ϕ̂
(1)
1 = −

∑

h=3,4

1

ω
(h)
1

ϕ̂
(h)
0 ψ̂

(h)
0 M2ϕ̂

( j)
0 a(1)

j , (81)

where the matrix elements,mh j ≡ ψ̂(h)
0 M2ϕ̂

( j)
0 , are given by

m31 = m41 =
pθ
φ2

0

m21 , (82)

m32 = m42 =
pθ
φ2

0

m22 , (83)

2We used ˆϕ(h)
0 ψ̂

(h)
0 M1ϕ̂

(l)
1 = ω

(h)
1 ϕ̂

(1)
1 and ϕ̂

(h)
0 ψ̂

(h)
0 ω

(l)
2 a(l)

j ϕ̂
( j)
0 =

ϕ̂
(h)
0 ω

(l)
2 a(l)

j δh j = 0 for j = 1,2 andh = 3,4.

respectively. Then, substitutingmh j, a(1)
j , ω(h)

1 , andϕ̂(h)
0 to Eq.

(81), we find the first order right-eigenvector as

ϕ̂
(1)
1 = (0,0,0,C)T (84)

with C ≡ −
(

m21a
(1)
1 +m22a

(1)
2

)

pθ/(φ0Jq). It is known that
the other modes (l = 2,3,4) are immediately suppressed in
granular flows under simple shear deformations [53–55].

In summary, the hydrodynamic modes truncated at the first
order ofǫ is derived as

ϕ̂(1) ≃ a(1)
j ϕ̂

( j)
0 + ǫϕ̂

(1)
1

=

(

−pθa
(1)
2 /J, pφa

(1)
2 /J,a(1)

1 , ǫC
)T

, (85)

where the normalized energy spectrum,E(k)/E(0) = δû2
x +

δû2
y, is given by

E(k)
E(0)

= a(1)
1

2
+ ǫ2C2 . (86)

In the manuscript, we denotea(1)
1 anda(1)

2 asa1(q) anda2(q),
respectively.

2.3 Parameter dependence

We examine the sensitivity of our theoretical expression ofthe
spectrum, Eq. (86), to the mean area fraction,φ0, the models
of pair correlation functions, Eqs. (24)-(26), and the fitting
parameter in Savage’s theory, Eq. (30). We also discuss the
dependence of our theoretical expression on the critical area
fraction,φc, and maximum area fraction,φ∞, which we have
already estimated from the numerical results of macroscopic
flow properties of dense granular materials (Sec. 1.7).

Figure 5 shows the dependence of the theoretical expres-
sion, Eq. (86), on the mean area fraction in the range between
φc < φ0 < φ∞, i.e. in a yielding state, where the global fitting,
Eq. (26), is used for the model of pair correlation function,
i.e. G(φ) = GGF(φ), and the parameters in Savage’s contin-
uum theory (a0, φc, andφ∞) are determined by the numerical
results of macroscopic flow properties as listed in Table 2.
In this figure, there is no significant difference between the
theoretical expressions with different values of the mean area
fraction, as we have also confirmed in MD simulations that
the spectrum is quite insensitive to the mean area fraction if
the system is yielding,φ0 > φc, in a quasi-static regime.

Figure 6 displays the theoretical expressions with the three
different models of pair correlation functions, Eqs. (24)-(26),
where the mean area fraction and scaled shear rate are fixed to
φ0 = 0.84 andγ̇tm = 2.5× 10−5, respectively, in both the MD
simulations and theoretical expression, Eq. (86), such that the
system is yielding in a quasi-static regime. In this figure, the
theoretical expression is almost independent of the choiceof
pair correlation functions, except for the difference in high
wave numbers,kdm & 3.

Figure 7 shows the dependence of the theoretical expres-
sion on the parameters introduced in Savage’s continuum the-
ory, i.e. (a) the reference value of contact pressure,a0, (b)
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critical area fraction,φc, and (c) maximum area fraction,φ∞.
As shown in Fig. 7(a), the theoretical expression is insensitive
to the reference value (in the range between 0.025≤ a0/kn ≤
0.125). However, it increases with the increase of critical area
fraction fromφc = 0.70 to 0.85 (Fig. 7(b)) and decreases with
the increase of maximum area fraction fromφ∞ = 0.86 to
0.92 (Fig. 7(c)). Note that the maximum area fraction,φ∞,
are included not only in the constitutive model of pressure,
pcon (Eq. (15)), but also in the model of pair correlation func-
tion at contact,GGF(φ) (Eq. (26)). Therefore, the values ofφc

andφ∞ are important in our theoretical expression of the spec-
trum, though these values can be determined from the numer-
ical results of macroscopic flow properties of dense granular
materials (Sec. 1.7).

10-3

10-2

10-1

100

10-1 100 101

0.81
0.82
0.83
0.84

Figure 5: (Color online) The theoretical expression of the
spectrum, Eq. (86), with different values of the mean area
fraction,φ0, as listed in the legend, where the parameters in
Savage’s continuum theory (a0, φc, andφ∞) are listed in Ta-
ble 2. The global fitting model, Eq. (26), is used for the pair
correlation function, i.e.G(φ) = GGF(φ).

10-3

10-2

10-1

100

10-1 100 101

MD
Carnahan-Starling

Free volume theory
Global fitting

Figure 6: (Color online) The theoretical expression of the
spectrum, Eq. (86), with three different models of pair cor-
relation function at contact,G(φ), where the red solid, green
broken, and blue dotted lines represent the Carnahan-Starling
model,GCS(φ), free volume theory,GFV(φ), and global fitting,
GGF(φ), i.e. Eqs. (24)-(26), respectively (as listed in the leg-
end). The parameters in Savage’s continuum theory (a0, φc,
andφ∞) are listed in Table 2. The open circles are the result of
MD simulations. In both the MD simulations and theoretical
expression, Eq. (86), the mean area fraction and scaled shear
rate are fixed toφ0 = 0.84 andγ̇tm = 2.5× 10−5, respectively.

10-3

10-2

10-1

100

10-1 100 101

0.70
0.75
0.80
0.85

10-3

10-2

10-1

100

10-1 100 101

0.86
0.88
0.90
0.92

10-3

10-2

10-1

100

10-1 100 101

0.025
0.050
0.075
0.100
0.125

Figure 7: (Color online) The dependence of the theoretical ex-
pression, Eq. (86), on the parameters in Savage’s continuum
theory, i.e.a0, φc, andφ∞, where the mean area fraction and
scaled shear rate are fixed toφ0 = 0.84 andγ̇tm = 2.5× 10−5,
respectively: (a) The reference value of contact pressure,a0,
increases as listed in the legend (in the unit of spring con-
stant,kn), whereφc = 0.80 andφ∞ = 0.90 are used. (b)
The critical area fraction,φc, increases as listed in the legend
and indicated by the arrow, wherea0 = 3.25 × 10−2kn and
φ∞ = 0.90 are used. (c) The maximum area fraction,φ∞,
increases as listed in the legend and indicated by the arrow,
wherea0 = 3.25× 10−2kn andφc = 0.80 are used.
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3 The difference from turbulence

In this section, we describe the basic picture behind the
anomalous cascade of kinetic energy which we observed in
MD simulations. The decay of the spectrum is obviously dif-
ferent from the usual energy cascade in two-dimensional tur-
bulence, i.e.E(k) ∼ k−3 [56]. To clarify such a difference, we
first summarize the usual energy cascade (Sec. 3.1) and then
explain a possible interpretation on the cascade of kineticen-
ergy in dense granular materials based on Refs. [57,58] (Sec.
3.2).

3.1 The usual energy cascade

To shortly explain the usual energy cascade, we first introduce
the (incompressive) Navier-Stokes equation for the velocity
field, u(r , t), as [59]

D
Dt

u = −ρ−1
0 ∇p+ ν∆u , (87)

whereD/Dt = ∂/∂t + u · ∇, ρ0, p, andν = η/ρ0 are the ma-
terial derivative, mass density (constant), pressure, andkine-
matic viscosity, respectively. Because the Fourier component
of pressure is given bypk = −(ρ0/k2)

∑

k′(k · uk′ )(k′ · uk−k′ ),
the Fourier transform of the Navier-Stokes equation (87) is
written as

∂

∂t
uk = −I

∑

k′
(k · uk−k′ )u⊥k′ − νk2uk , (88)

where I , k (or k′), k ≡ |k|, anduk are the imaginary unit,
wave number vector, wave number, and the Fourier compo-
nent of the velocity field, respectively. On the right-hand-side
of Eq. (88), the first term represents anonlinear couplingof
the velocity fields with different wave numbers,uk−k′ andu⊥k′ ,
which induces the mesoscopic transport of kinetic energy, i.e.
theenergy cascade, where

u⊥k′ ≡ uk′ − k̂
(

k̂ · uk′
)

(89)

with the unit vector,k̂ ≡ k/k, is perpendicular to the wave
number vector,k, i.e. u⊥k′ is the transverse component ofuk′ .
The first term on the right-hand-side of Eq. (88) indicates the
propagationof uk (because of the imaginary unit,I ) so that
the nonlinear coupling does not dissipate the kinetic energy.
In fact, the nonlinear coupling, (k · uk−k′ )u⊥k′ , results from the
pressure gradient and convection term ininertia, ρ0Du/Dt,
where both conserve the energy. However, the second term,
−νk2uk , represents thediffusionof uk which causes the energy
dissipation.

If the wave number is sufficiently high,k ≫ 1, the second
term on the right-hand-side of Eq. (88) is dominant. Then, the
Navier-Stokes equation (88) is reduced to a diffusion-type,

∂

∂t
uk ≃ −νk2uk , (90)

where the velocity field decays exponentially asuk ∝ e−νk
2t.

This is the energy dissipation (orviscous heating) in usual

fluids, where the rate of dissipation,νk2, increases with the
increase of wave numbers, and vice versa.

Figure 8(a) shows a schematic picture of the usual energy
cascade in turbulence, where the energy injection at macro-
scopic scale induces large-scale eddies which further generate
smaller size eddies. The nonlinear coupling of different wave
numbers transfers the external supply of energy to smaller
scales without energy dissipation. At microscopic scale (the
Kolmogorov length∼ lm), the viscous heating is dominant
and the transferred energy is finally dissipated into heat. In
between the macro- and micro-scales, the power-law decay
of energy spectrum can be observed, e.g.E(k) ∼ k−5/3 and
k−3 in three and two dimensions, respectively [56,59].

3.2 The cascade of kinetic energy in dense
granular materials

In contrast to usual fluids, granular materials dissipate the ki-
netic energy byinelastic interactionsbetween the particles in
contacts [57, 58]. Because the contact forces in the normal
and tangential directions are modeled by the linear spring-
dashpot, i.e.

fn = knξn − ηnξ̇n , (91)

ft = ktξt − ηtξ̇t , (92)

respectively, the inelastic interactions are caused by thedamp-
ing forces (−ηnξ̇n and−ηtξ̇t) which are proportional to therel-
ative speedsbetween the particles in contacts (ξ̇n andξ̇t).

Figure 8(b) displays a schematic picture of the cascade
of kinetic energy in dense granular materials under simple
shear deformations. At macroscopic scale, the external sup-
ply of energy by simple shear deformations generates large-
scalecollective motions(or vortex-like structures) of granular
particles, e.g. as shown in Fig. 11(a), where relative speeds
between the particles are quite small (because they move to-
gether) and thus the energy dissipation by inelastic interac-
tions is negligible. The large-scale collective motions induce
smaller size collective motions as the kinetic energy is trans-
ferred to smaller scales (from the blue to white regions in Fig.
8(b)). At microscopic scale (about particle diameter∼ dm),
however, granular particles cannot form vortex-like structures
(due to the size of their own) and they moverandomlyrather
than collectively (the red region in Fig. 8(b)), where relative
speeds between them are considerably large so that the trans-
fered kinetic energy is finally dissipated by inelastic interac-
tions.
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Figure 8: (Color online) (a) A sketch of the usual energy cas-
cade, where the circles representeddiesrotating as indicated
by the arrows andklm is the wave number scaled by the Kol-
mogorov length,lm. External forces at macroscopic scale in-
duce large-scale eddies (in the blue region) which further gen-
erate smaller size eddies (in the white and red regions). The
nonlinear coupling of different wave numbers transfers the ki-
netic energy through the mesoscopic scales which is finally
dissipated by the viscous heating at microscopic scale,∼ lm.
(b) A sketch of the “kinetic energy cascade” in dense granular
materials, where the (filled) circles represent granular parti-
cles moving as indicated by the arrows andkdm is the wave
number scaled by the mean particle diameter,dm. Simple
shear deformations at macroscopic scale induce large-scale
collective motions(in the blue region) which further generate
smaller size collective motions (in the white region), while the
particle motions are random at microscopic scale (in the red
region). The interaction between different size of collective
motions transfers the kinetic energy through the mesoscopic
scales which is finally dissipated by the inelastic interactions
at microscopic scale,∼ dm.

4 Supplementary data

In this section, we provide some supplementary data of MD
simulations for the manuscript. In Sec. 4.1, we show our

numerical results of the PDFs of non-affine velocities with
different values of the control parameters, i.e. the mean area
fraction,φ0, and scaled shear rate, ˙γtm. In Sec. 4.2, we con-
firm that the statistics of non-affine velocities, i.e. the PDFs,
correlation functions, and spectra, are quite insensitiveto the
microscopic friction coefficient, µm, if the system is yielding
(φ0 > φc) in a quasi-static regime (˙γtm ≪ 1). In Sec. 4.3, we
examine the effect ofparticle inertiaon the power-law decay
of the spectrum.

4.1 The dependence of the PDFs on the control
parameters

Figure 9(a) displays the dependence of the PDFs on the mean
area fraction,φ0, where the PDFs of each component,P(δuα)
with α = x, y, are symmetric around zero (δuα = 0) and well
correspond with each other (ifφ0 is the same) such that the
distribution of non-affine velocities isisotropic in space. In
this figure, the widths of the PDFs increase withφ0, while the
difference between them becomes quite small once the mean
area fraction exceeds the critical value,φ0 > φc, i.e. if the
system is yielding (or jammed).

Figure 9(b) shows the dependence of the PDFs on the
scaled shear rate, ˙γtm, where the widths of the PDFs
monotonously increase with the decrease of scaled shear rate,
implying the growth of spatial correlations of non-affine ve-
locities in a quasi-static regime, ˙γtm ≪ 1.

The dependence of the widths of the PDFs on the control
parameters should be compared with the results of spatial cor-
relation functions of non-affine velocities in the manuscript,
where the correlation length suddenly increases around the
critical area fraction,φc ≃ 0.8, and it monotonously increases
with the decrease of scaled shear rate. Therefore, the increase
of the width is closely related to the growth of spatial correla-
tions of non-affine velocities.

4.2 The effect of microscopic friction on statis-
tics of non-affine velocities

Figure 10 shows the dependence of the PDFs,P(δuy), corre-
lation functions,C(r), and spectra,E(k), on the threshold for
the Coulomb friction, where the microscopic friction coeffi-
cient varies fromµm = 0.1 to 0.5. In Figs. 10(a) and (b), we
confirm that the PDFs and correlation functions are quite in-
sensitive to the microscopic friction if the system is yielding
in a quasi-static regime (φ0 = 0.84 andγ̇tm = 2.5× 10−5). In
addition, there is no significant difference between the spec-
tra such that the power-law behavior,E(k) ∼ k−9/5, is well
retained in the range between 0.1 ≤ µm ≤ 0.5 (Fig. 10(c)).
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Figure 9: (Color online) (a) The dependence of the PDFs on
the mean area fraction,φ0, whereφ0 increases as listed in the
legend and indicated by the arrows. The scaled shear rate is
fixed to γ̇tm = 2.5 × 10−5 and the dotted line represents a
Gaussian fit forP(δux) with the smallest mean area fraction,
φ0 = 0.70. (b) The dependence of the PDFs on the scaled
shear rate, ˙γtm, whereγ̇tm decreases as listed in the legend
and indicated by the arrows. The mean area fraction is fixed
to φ0 = 0.84 and the dotted line represents a Gaussian fit for
P(δux) with the largest shear rate, ˙γtm = 2.5 × 10−3. In both
(a) and (b), the closed and open symbols representP(δux) and
P(δuy), respectively, and the microscopic friction coefficient
is given byµm = 0.5.
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Figure 10: (Color online) Effects of microscopic friction on
the (a) PDFs, (b) correlation functions, and (c) spectra of non-
affine velocities, where the microscopic friction coefficient,
µm, increases as listed in the legend of (a). The dotted line
in (a) represents a Gaussian fit for the result of the smallest
microscopic friction coefficient, µm = 0.1. Here, the mean
area fraction and scaled shear rate are fixed toφ0 = 0.84 and
γ̇tm = 2.5× 10−5, respectively.
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4.3 The effect of particle inertia

As shown in Sec. 3.1, theinertia plays a key role in the meso-
scopic transport of kinetic energy in usual turbulent flows.
However, the effect ofparticle inertiaon the power-law decay
of the spectrum in dense granular materials is still unknown.

To clarify the role of particle inertia, we carry out MD sim-
ulations withoverdamped dynamics. In the manuscript, we
numerically solved rigid body dynamics of each particle, i.e.
numerically integrated the equations of translational androta-
tional motions. Now, we addviscous forcesto the equations
of motions as

mr̈ i =

∑

j,i

f i j − ζtraṙ i , (93)

I iω̇i =

∑

j,i

f i j × ni j − ζrotωi , (94)

(i, j = 1, . . . ,N), where we have introduced viscosity coef-
ficients to the translational and rotational motions asζtra and
ζrot, respectively. In these equations, the contact force,f i j , is
modeled by the linear spring-dashpot model (as described in
the manuscript) and the particle angular velocity,ωi , is driven
by the torque between the particles in contacts,f i j ×ni j , where
ni j ≡ (r i − r j)/|r i − r j | is a unit vector parallel to the relative
position. We set the particle mass,m, and the particle moment
of inertia, I i ∝ m, to be zero and then numerically integrate
overdamped dynamics,

ṙ i = ζ−1
tra

∑

j,i

f i j , (95)

ωi = ζ−1
rot

∑

j,i

f i j × ni j , (96)

where we simply assume that the viscosity coefficients are the
same,ζtra = ζrot = 10mt−1

m .

We compare the overdamped dynamics (m = I i = 0) with
the underdamped dynamics (ζtra = ζrot = 0) which we orig-
inally used in the manuscript. Figure 11 shows spatial dis-
tributions of non-affine velocities obtained by the (a) under-
damped dynamics and (b) overdamped dynamics, where the
color coordinates are the same with that used in Fig. 1(b) of
the manuscript. In this figure, we can see that the collective
behavior of non-affine velocities isextremely suppressed by
the overdamped dynamicsand thus turbulent-like structures
(e.g. large scale and small scale eddies) of non-affine veloci-
ties can be hardly observed. As a result, the spatial correlation
function,C(r), quickly decay (Fig. 12(a)) and the spectrum,
E(k), does not show a clear power-law decay (Fig. 12(b)) if
we use the overdamped dynamics in MD simulations. There-
fore, the particle inertia is crucial for the mesoscopic transport
of kinetic energy in dense granular materials.

Figure 11: (Color online) Spatial distributions of non-affine
velocities in steady states, where the color coordinates rep-
resent their magnitudes scaled by the maximum. The (a)
underdamped dynamics and (b) overdamped dynamics are
used in MD simulations, where the mean area fraction, scaled
shear rate, and microscopic friction coefficient are fixed to
φ0 = 0.82, γ̇tm = 2.5× 10−5, andµm = 0.5, respectively.
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