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Figure S1. Schematic of experimental setup for droplet squeezing with controllable 

forces. The base (the lower coated glass) carrying a droplet is put on an electronic scale 

on a lifting platform. The tool (the upper coated glass) is stuck on a thick glass whose 

position is fixed. By adjusting the height of the lifting platform, the force applied on 

the droplet is controlled and is shown by the scale (working range: 0.1 mN-5 N; 

resolution: 0.01 g). 

 

 

 

 

 

Figure S2. Characterization of the silica coating on glass substrate. (a) 

Transmission electron microscopy (TEM) image of the sol that consists of SiO2 

particles of ~20 nm. The inset is a picture of the SiO2 sol and the schematic of dip-

coating. (b) Transmittance spectrum of the glass with the sol-gel coating and its 

scanning electron microscopy (SEM) morphology; the observed particle size is larger 

than the true value due to the platinum spraying treatment. The inset sketches the coated 

glass after dip-coating. This porous coating increased the transmittance of glass from 

~92.0% to ~99.0% by reducing the Fresnel reflection. That’s to say, this coating is both 

superhydrophobic and antireflective, with the particles removed easily. 
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Figure S3. 3D images of deformed droplets reconstructed by the Matlab method. 

Two squeezing forces (i.e. F = 4.0 and 8.0 mN) are chosen here as an example. The 

droplet volume is 20 l for both (a) and (b), and the surface areas are calculated as 42.2 

mm2 for F=4.0 mN and 53.3 mm2 for F=8.0 mN, respectively.  

 

 

 

 

 

 

 
 

Figure S4. Series of Matlab images of a deformed droplet during injection. The 

droplet of  20 l was initially suqeezed under F = 6 mN as an example. The total 

volume and surface area at each injuection stage are marked, respectively. 

 

 

 



 

Figure S5. Photographs and reconstructed 3D images of naked droplets under 

gravity. (a) and (b) are side views of 40 and 80 l naked droplets. The red curves 

correspond to the theoretical results which agree well with the experimental images. (c) 

and (d) are reconstructed 3D images by the Matlab method according to (a) and (b), 

respectively. 

 

 

 

 
Figure S6. Comparison of predicted and experimental surface area (S)-volume (V) 

relations for naked droplets. The numerical results are calculated according to 

Equations S3 and S4 below. The experimental results are obtained by 3D image 

reconstruction method. 

 



 

Figure S7. Photographs of big liquid plasticine. Both pure (d) and dyed water were 

employed for this experiment. The light green droplet in (a) was obtained by injecting 

water into the one in (c). 

 

 

 

 

Figure S8. Diffusion in liquid plasticine. (A) Electrophoresis of a hydrosol of 

nanogold particles (~20 nm, Au concentration of 330 ppm) in a linear droplet. The 

voltage was maintained as 30 V. Similar to what is presented in the manuscript, the 

converging of Au nanoparticles to the left resulted in the color change. (B) Chemical 

reaction of FeCl3 (1 mol/L) and NaOH (3 mol/L) with two deformed droplets. As shown, 

after the two droplets were jointed the chemical reaction began which was reflected by 

the color change, but proceeded much slower compared with the case of mixing two 

normal droplets (see Ref 18 in the manuscript); this was mainly because that the 

elongated shape restricted the diffusion. Both of (A) and (B) illustrate the channel 

function of liquid plasticine, and demonstrate that different parts with different 

properties can be separated easily by the cutting. Experiment B also demonstrates the 

reactor function.  



 

Figure S9. The cutting of liquid plasticine. Pure (a) and dyed (b) linear droplets were 

prepared for the cutting demonstration. As shown, the plasticine can be cut into several 

parts easily using a hydrophobic knife (coated glass is employed here) and the size 

choice is almost at will. 

 

 

Theoretical derivations  

 

1. Surface area-volume relation for sessile droplets under gravity 

 

The shape of a sessile droplet under gravity on a flat surface (Figure S10) is governed 

by the balance between the Laplace pressure and gravity, that is[1] 
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where  is liquid surface tension,  is density, g is gravity acceleration, and b is half the 

curvature radius at the apex (ponit O).  

 
Figure S10. Side view of a sessile droplet under gravity on a flat surface.  

 



By introducing  as an intermediate variable, we may rewrite Equation S1 as 
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with boundary conditions: x()=0 and z()=0 at =0. The parameter (b) is determined 

by the condition of volume conservation. For given b, numerically solving Equation S2 

would result in the shape of a sessile droplet under gravity, which agrees well 

experiment observations (Figure S5). Then, the total surface area (including liquid-

vapor and solid-liquid interfaces) and volume of the sessile droplet can be obtained by 

the following integrations, respectively, 
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where  is contact angle and equals 150 here. The first term on the right hand side of 

Equation S3 is the liquid-vapor interface area, and the second term is the solid-liquid 

interface area. By using data,  =0.0728 N/m for water and g = 9.8 N/Kg, we calculated 

the variation of the total surface area (S) versus the volume (V) of sessile droplets under 

gravity. It shows a power-law relation between S and V with the power exponent equal 

to 0.69 (Figure S6), that is,  

 0.69~S V  (S5) 

This coefficient (0.69) is slightly higher than that (i.e. 2/3) for a spherical droplet with 

neglected gravity.  

 

 

 

2. Nanoparticle interactions at water surface 

 

The particle assembly at the water-air interface is dominated by particle-particle 

interactions, which include the capillary force, van der Waals attraction, screened-

Coulomb repulsion, and dipole-dipole repulsion.[2,3] Whereas the capillary interaction 

energy is much smaller than the thermal energy when the radius is far less than ~10 

µm[5], the interaction between silica nanoparticles is generally controlled by the van der 

Waals and electrostatic interactions (see 2.1, 2.2, 2.3 in the below). The total particle–

particle interaction energy, Utot, normalized by kBT (where kB is Boltzman constant and 

T is temperature), is expressed as: 

dipoletot vdW coulomb
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The vdW attraction exists for the whole part of each particle, while the electrostatic 

repulsion only exists between the immersed parts since surface ionization happens at 

the silica-water interface (schematic 1 in Figure S11A). Thus, the immersed height 



fraction  of those particles significantly affects their interaction strength. The plots of 

Utot/kBT as a function of particle gap,   (= d2r, where d is center-to-center distance 

and r is particle radius), for six different values of , are shown in Figure S11B. A 

potential barrier exists for  >15%, which approaches infinity as  gets close to one. 

The barrier means that particles tend to bond together when their gap is less than the 

barrier position, in which case, the vdW attraction is dominant. In addition, for stacked 

particles (schematic 2 in Figure S11A) which may occur according to the mechanism 

shown in Figure 1F, they are equivalent to a bigger particle with a smaller immersed 

height fraction.  

Thus, forcing particles close enough (several nanometers apart) causes the 

formation of a stable solid film, and this is the microscopic mechanism of particle 

jamming. The small gaps between those closely packed nanoparticles could provide 

high capillary pressure difference, and thus help the particle film withstand high liquid 

pressure without leakage (see the third part of Theoretical derivation). When jamming 

is relieved, as the corresponding cases described in Figure 3B, the electrostatic 

repulsion gradually dominates, and this helps to form the particle islands with the 

injection manipulation. 

 

 
Figure S11 Energy analysis of the compound interface of deformed droplet. (A) 

Separate schematics of single particle and stacked particle attachments. (B) Total 

particle-particle interaction energy, Utot, (normalized by kBT) versus particle gap. The 

inset is a schematic of two adjacent nanoparticles partially immersed in a water droplet. 

Here, h is immersion depth, and  is immersion fraction and equals h/2r, where r is 

particle radius. The subaqueous parts are endowed with double electric layers, which 

generate electrostatic repulsion between particles. 

 

 

2.1 Capillary interaction 

The capillary interaction energy between floating spheres of radius r at a horizontal 

center-to-center distance, d, can be expressed as[4] 

 2 2 2
cap 02 ( ) U r B S K d a
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where a is the capillary length, B is the Bond number, and  
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Here, ρs and ρ are sphere and water densities, respectively, and  is contact angle (Figure 

S12). For silica sphere particles, ρs/ρ = 2.6. The capillary length is defined by a = 

(γ/ρg)1/2, and the Bond number is defined by B = (r/a)2. Given  = 105º for hydrophobic 

silica particles, the variation of Ucap, as normalized by the thermal energy kBT, with r at 

d = 2 r is plotted in Figure S13. It is seen that when the radius is much smaller than ~6 

µm, the capillary interaction energy is much smaller than the thermal energy and thus 

negligible.  

   Nevertheless, the particles trapped at the water-air interface are thermodynamically 

stable since the detachment energy for each particle, expressed by[5] 

 2 2
remove (1 cos )   U r  (S8) 

reaches as high as 3000-fold of kBT even for particles of radius r = 10 nm. This indicates 

that once attached at the water surface, those nanoparticles can hardly be removed. 

 

 

Figure S12. Schematic of particles trapped at the water-air interface. (a) For larger 

particles, the deformed water-air interface due to gravitation causes significant capillary 

interaction between particles. (b) For smaller particles, the meniscus is undeformed and 

the particle-particle interaction is controlled by the van der Waals and electrostatic 

interactions.  

 

 

 



 
Figure S13. Variation of capillary interaction energy between particles with the radius. 

 

2.2. Van der Waals interaction 

The van der Waals (vdW) interaction energy between equal spheres partially 

immersed at the water-air interface is given by[6-8] 
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where Aeff is the effective Hamaker constant, 

 2
eff pp pwp pp(3 2 )( )A A A A    

 
(S10) 

Here,   is the immersed height fraction and equals (1+cos)/2, App is the Hamaker 

constant for the particles in vacuum, and Apwp is the effective bulk Hamaker constant 

for the particles in the water. For silica, App = 6.3510-20 J, and Apwp = 0.4810-20 J[9]. 

In the calculation below,  is taken as 100 nm. 

 

2.3. Electrostatic interaction 

The electrostatic interaction between partially immersed particles at the water-air 

interface includes two parts, the dipole-dipole interaction and screened-Coulomb 

interaction. Their respective interaction energy are expressed as[10, 11] 
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and 
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where 0 is the permittivity of vacuum,  is the relative permittivity of water,  is the 

reciprocal of the Debye screening length, and q is the charge of the water-immersion 

section of the particle. Here, 0 = 8.8510-12 F/m,  = 80, and -1 = 0.7 µm[10]. When r 

is much smaller than -1, q = 2πr2(1+cos)σ, where σ is the particle surface charge 



density due to surface dissociation. The unknown parameter of σ is taken as σ = -1 

mC/m2[12], typical value for ionized silica surfaces in water. 

 

 

3. Capillary pressure between nearby nanoparticles 

 

The transformation of the liquid–vapor interface among three nearby particles under 

different liquid pressure is described by the Laplace equation, 

c
c

2 cos 
P

r                     (S13) 

where Pc is the pressure difference across the meniscus, rc is the effective capillary 

radius in the order of particle size, and  is the transformation angle of the meniscus.  

For a droplet, the maximum height tends to twice the capillary length, a, that is, Hmax = 

2a. This yields a maximum liquid pressure Pmax in the water puddle: 

max max 2p gH ga                    (S14) 

The maximum  can be calculated by equating Eqs. (S12) and (S13). Taking rc = 

10 nm yields a value of  very close to 0 (see Figure S12). This indicates that the 

deformation of the meniscus after the change in droplet shape is negligible. On the other 

hand, the liquid–vapor interfacial area, SLV, remains almost constant for various 

deformations, and thus, the total free energy of the droplet system varies negligibly for 

different deformations. A deformed droplet will therefore not change spontaneously to 

form other shapes, and the various deformations are all stable. This reflects the stability 

of single deformed droplet and water art. 

 

 

Figure S14. Schematic of close triangular arrangement of nanoparticles. 
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