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1 Molecular Dynamics

1.1 Liquid-vapor surface tension
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Figure S1: Surface tension γlv of the liquid-vapor interface as a function of the
width D of the simulation box. The simulations are for a Lennard-Jones fluid
at T = 0.8 ε/kB .

The liquid-vapor surface tension γlv is estimated via equilibrium molecular
dynamics (MD) simulations of liquid-vapor slabs (see the right panel of Fig. S1).
Fluid particles interact via the Lennard-Jones potential defined in the main
text. The system is kept at constant temperature T = 0.8 ε/kB using a Nosé-
Hoover chain thermostat. Periodic boundary conditions are applied in the three
directions.

The surface tension γlv is estimated following Kirkwood and Buff1:

γlv =
1

2
Ly(PN − PT ) , (1)

where Ly is the dimension of the simulation box in y direction (Fig. S1) and PN
(PT ) is the component of the pressure tensor Pαβ normal (tangential) to the
interface. The factor 1/2 in eqn (1) follows from the presence of two liquid-vapor
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interfaces due to the periodic boundary conditions. In our simulations PN and
PT read as follow:

PN = Pyy (2a)

PY =
1

2
(Pxx + Pzz) . (2b)

The components Pxx, Pyy, and Pzz of the pressure tensor can be evaluated in
MD simulations using the virial expression2:

Pαβ =
1

V

〈
N∑
i=1

mviαv
i
β + riαf

i
β

〉
, (3)

where V = D2 Ly is the total volume of the simulation box with Lx = Lz ≡ D.
The sum in eqn (3) extends over the total number of particles, N , while riα, viα,
f iα are the α-components of the position, velocity, and force of the i-th particle,
respectively.

The values of γlv as a function of the width D of the simulation box are
shown in Fig. S1 and are found to be practically independent of the size of the
liquid-vapor interface up to the investigated scale. The estimated value of the
liquid-vapor surface tension is γlv = 0.57 ± 0.02 ε/σ2.

1.2 Computation of the pressure

−0.015 −0.005 0.005

F

−0.08

−0.04

0

0.04

0.08

P
l

−0.015 −0.005 0.005

F

0.006

0.008

0.01

P
v

a) b)

Figure S2: a) Liquid pressure Pl as a function of the force F acting on the
atoms of the upper wall (black symbols); the error bars are smaller than the
symbol size. The red line is eqn (4). The inset shows a snapshot of the atomistic
system, with the yellow (black) box indicating the region in which Pl (Pv) is
computed from eqn (3) and eqn (5). b) Vapor pressure Pv as a function of the
force F ; the red line represents the average value.

In this subsection we describe the procedure used in MD to estimate the
liquid and vapor pressures Pl and Pv, respectively. These are needed in order to
compare atomistic and macroscopic results at the same thermodynamic condi-
tions. As already mentioned in the main text, the upper solid wall of the system
is used as a piston in order to control the liquid pressure (see Fig. S2a). This
is obtained by applying a constant force F in the y direction to each particle in
the wall. At equilibrium, the total force on the upper wall is balanced by the
liquid pressure:

FNp = PlA , (4)
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where Np is the number of particles in the upper wall and A = LxLz is its surface
area. In the simulations Pl is also estimated independently by computing the
pressure tensor Pαβ , defined in eqn. (3), in a suitable control region (the yellow
box in the inset of Fig. S2) and defining

Pl = (Pxx + Pyy + Pzz)/3 . (5)

In Fig. S2a, Pl is reported as a function of the applied force F . As expected
from eqn (4) a linear relation holds. The negative sign of the angular coefficient
is due to the y-axis which is oriented in the opposite direction of F . Thus a
positive force F corresponds to a negative pressure (tensile state).

A similar procedure can be applied to compute the vapor pressure Pv. In this
case the control region for the computation of the pressure tensor is the black
box in the inset of Fig. S2a. Pv is always computed in the Cassie state to ensure
that the liquid-vapor interface is far from the control region. Figure S2b reports
Pv as a function of the force F . This result shows that the vapor pressure does
not depend on F (hence on Pl) and can be safely considered constant (for the
chosen temperature T = 0.8 ε/kB). The average value of the vapor pressure is
Pv = 0.0084 ε/σ3.

Given Pl(F ) and Pv it is straightforward to compute ∆P (F ) = Pl(F ) − Pv
which is needed as an input for the macroscopic model.

2 Surface Evolver calculations

In the present section some technical details are reported in order to clarify
the use of Surface Evolver3 in solving the CREaM equations. The “Surface
Evolver” (SE in the following) is a computational tool which allows one to find
minimal surfaces, that is, surfaces that minimize their surface energy subject
to imposed constraints. The surfaces can be subjected to various kinds of con-
straints: the geometrical ones which act on the position of vertices, edges, and
facets, i.e., boundary constraints and boundary contact angle; and the “inte-
grated quantity” ones which act on quantities such as the body volume. The
final equilibrium shape of the liquid-vapor interfaces and the related surface
energy come out from a combination of these factors.

The SE uses a finite-elements method, which means that the “surface” under
investigation is discretized in a mesh made of simple elements. The initial
configuration of the system is manually implemented by the user which defines
in a datafile the surfaces and bodies, the boundary and volume constraints and
the various energies acting on the system itself.

Since the geometries considered in MD are effectively two-dimensional, given
the periodic boundary conditions in the z direction, we use the SE with one-
dimensional “surfaces” in two-dimensional space which is implemented in the
so-called string model 3. The basic element of this model is a segment and the
surface tension resides in these one-dimensional elements.

The SE evolves the surface towards minimal energy following a gradient
descent method. At every iteration step the algorithm reduces energy while
obeying the imposed constraints. The algorithm calculates the force acting
on each vertex as the negative gradient of the total energy. Subsequently the
surface is changed moving the free vertices in the direction of the force.
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In the case under investigation SE allows one to study the possible shapes
that a cavitation bubble assumes in different stages of growth. The SE is very
useful because the possible shapes of the vapor domains become complex given
the re-entrant geometry of the cavity and its heterogeneous chemistry.

2.1 Free-energy calculations
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Figure S3: Illustration of the procedure followed to obtain the free-energy pro-
files via CREaM. a) two different topologies, vapor bubble in a corner and a
symmetric meniscus inside a branch of the T-shaped defect, are selected. b)
minimization via SE for a fixed value of the vapor volume: the shape of the
liquid-vapor interface evolves in order to reach the constrained free-energy min-
imum. c) free-energy profiles as a function of V̄v for the two selected topologies;
the points correspond to the free-energies computed in panel b).

In CREaM calculations the liquid-vapor surface tension is set equal to that
computed in MD simulations and the relation between solid-liquid, solid-vapor,
and liquid-vapor surface tensions is imposed via the Young’s equation. For
the hydrophobic (hydrophilic) chemistry the contact angle of the liquid-vapor
interface is θY = 110◦ (θY = 55◦).

The SE is used in order to find the configuration corresponding to free-
energy minima which enclose a given volume of vapor V̄v. These configurations
coincide with the solutions of eqn (5) of the main text (CREaM); this procedure,
however, yields only the constrained minima. The free-energy profile is then
obtained by evaluating the surface contribution Ω(s) = γlv(Alv + cos θYAsv) in
eqn (3) of the main text for the minimal surfaces enclosing V̄v computed by SE;
this procedure is repeated for all V̄v ranging from the pure liquid to the pure
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Figure S4: Free-energy profiles computed via SE at different pressures (solid
lines). Two chemistries, hydrophobic and hydrophilic, are reported in the left
and right panels, respectively. Figures on the top panels refer to ∆P = 0.19,
those on the bottom to ∆P = −0.056. The corresponding atomistic free-energy
profiles are reported for comparison (dash-dotted lines).

vapor states. The only delicate point is that for a given V̄v there are several
different bubble shapes that satisfy CREaM conditions; we try to compute all
of them in order to be able to compare the free energies connected to each of
these “valleys” of the free-energy landscape. From an operational point of view
the procedure, illustrated in Fig. S3, consists of the following steps:

a) identify the possible topologies that a vapor domain can assume (see
Fig. S3a);

b) find via SE the minimal solution corresponding to the chosen bubble topol-
ogy at fixed V̄v (see Fig. S3b);

c) evaluate the surface free-energy profile Ω(s)(V, T ; V̄v) as function of the
volume of vapor ranging from V̄v = 0 to V̄v � Vref (see Fig. S3c);

d) repeat the last two steps for every bubble topology.

It is important to remark that the minimization procedure implied in CREaM
and implemented in the SE calculations involves only the surface terms4. As
already clear from eqn (3) of the main text, the pressure term is simply a linear
term in V̄v which is added to the surface free-energy profile:

Ω(µ, V, T ; V̄v) = Ω(s)(V, T ; V̄v) − ∆P (µ) V̄v . (6)

In the main text profiles at ∆P = 0 are reported. In Fig. S4 representative
profiles at positive and negative ∆P are shown.
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