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FIG. 1. (a) The probability distribution of 2 µm particle dis-
placements PDF(∆x,∆t, c) at ∆t = 2 s for varying bacterial
concentrations c. Dashed lines are fits to a Gaussian. (b) The
collapse of the probability distribution at different time steps
in a bacterial suspension with concentration c = 7.5 × 109

cells/mL.

I. ROLE OF CONFINEMENT AND
INTERFACIAL EFFECTS

The thickness of the film, hf , is about 100±20 microns
with the particle diameter d ranging from 0.6 − 39 µm.
Thus the ratio hf/d ∼ 150 − 3. Given that the ratio is
large for all except the largest particle, we consider possi-
ble confinement effects for the largest 39 micron particles.
An upper bound for the thermal diffusivity in the absence
of bacteria can be obtained by assuming that the parti-
cle spans the film and diffuses in the plane of the film
using the Saffman-Delbruck [1] estimate. According to
this theory, the diffusivity of a sphere (diameter d ∼ hf)
completely confined in a free-standing film with viscosity
µ surrounded by air with viscosity µa is given approxi-

mately by

Df
0 ≈

kBT0

3πµd

(
3

4

[
ln(2

µ

µa
)− 0.5772

])
.

Note that the diffusion of even the largest sized particles
we used (39 µm) is not as confined as the expression
assumes since the particle does not span the width of the
film. Furthermore we note that the diffusivity Df

0 ∼ d−1,
a functionality similar to the free thermal diffusivity D0.
Plugging in values for the viscosities of film, µ and air
µa, we find Df

0 ≈ 0.05 µm2/s for the 39 micron particle.

For the lowest bacterial concentration we used, the
effective diffusivity of the particle is approximately 0.1
µm2/s, still higher than Df

0. At concentrations greater
than 1.5 × 109 cells/mL, the effective diffusivity is an
order of magnitude higher and the particle diffusion is
dominated by activity and not by confinement.

Particles are only tracked while in the plane of focus.
For small particles (d < 3 µm), the sedimentation veloc-
ities are low (< 0.3 µm/s) and the particles do not sedi-
ment significantly over the time scale of the experiment.
The sedimentation velocity of the 39 µm polystyrene par-
ticle in water is ≈ 50 µm/s. Before taking data, we allow
the 39 µm to settle near the bottom of the film. While
the particle is close to the surface, there is still a film of
liquid and hence the comments in the previous paragraph
still apply - i.e., the effective diffusion is still dominated
by activity. Any draining of the fluid that results in the
particle breaching the surface occurs over scales much
larger than the experimental times.

Finally, we consider the possible deformation of the
interface from the particle due to the weight of the par-
ticle by estimating maximum induced curvatures. The
settling particle exerts a force Fg = 1

6πgµ∆ρd3 on the

interface. Here, ∆ρ ≈ 0.05 × 103 kg/m3 and g ≈ 9.8
m/s2. This force acts on a surface with projected area of
roughly A = πd2/4. The pressure exerted, Fg/A, is less
than the capillary pressure 4σ/d suggesting that any sur-
face deformation occurs with curvatures smaller than the
particle curvature. Specifically for the 39 micron particle,
the ratio (Fgd/4σA) is less than 10−5.
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FIG. 2. The non-Gaussianity parameter of 2 µm particles
over time τ in the absence (c = 0 cells/mL) and presence of
E. coli (c = 0.75 and 3.0 × 109 cells/mL).

II. ROLE OF CONCENTRATION ON
PARTICLE DYNAMICS

A. Collapse of particle distributions

To probe the effect of bacteria-particle interactions on
long time particle displacements, we measure the van-
Hove distribution - the probability distribution function
(PDF) of particle displacements ∆x - for varying con-
centrations of E. coli and different particle sizes. Shown
in Fig. 1(a) are the PDF’s of 2 µm particles measured
over a fixed time interval ∆t = 2 s. The PDF curves
are nearly Gaussian (dashed lines are fits) indicating dif-
fusive behavior with widths that increase as the concen-
tration increases. When c = 0 cells/mL, the width of
the distribution yields D0 ≈ 0.2 µm2/s, consistent with
the Stokes-Einstein prediction for a freely diffusing par-
ticle. In the presence of bacteria, while still approxi-
mately Gaussian, the PDF’s exhibit deviations at the tail
end, particularly a relative enhancement compared to the
Gaussian fit. The tail-end deviations from Gaussianity
tend to decrease at the highest bacterial concentration,
c = 7.5 × 109 cells/mL. These observations are consis-
tent with previous experimental [2] and theoretical [3]
studies of swimming microorganisms. These studies have
shown that while the tail ends of particle displacement
distribution function in the bulk [4] exhibit strong devi-
ations from Gaussianity, the tail ends of the distribution
function in a fluid film converge towards Gaussianity [2].

As shown in Fig. 1(b), we can collapse the PDF curves
of particle displacements over time in the presence of E.
coli (c = 1.5× 109 cells/mL), when the displacement ∆x

is rescaled by ∆x/〈
√

∆x〉2.
The Gaussian nature of the particle distributions is fur-

ther exemplified by the non-Gaussianity parameter NGP
[5], which is defined as a function of time τ as

NGP(τ) =
〈∆x(τ)〉4

3〈∆x(τ)2〉2 − 1,
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FIG. 3. (a) Effective diffusivities, Deff for 2 µm particles, as
a function of bacteria concentration, c. The trend is roughly
linear, with a fitted slope (dashed line) consistent with previ-
ous results. (b) The corresponding crossover time τ increases
monotonically with c.

where the brackets denote ensemble averages. For a
Gaussian distribution, the NGP equals zero at all times,
and thereby quantifies the deviation of a distribution
from a Gaussian one over time. For the 2 µm particle
distributions shown Fig. 1, we have calculated the NGP
in the absence (c = 0 cells/mL) and presence of bacteria
(c = 0.75 and 1.5×109 cells/mL), as shown in Fig. 2. As
expected, in the absence of bacteria, when the system is
in thermal equilibrium, the NGP is approximately zero
(∼ 0.1) at all times. For c > 0 cells/mL, the NGP values
are still close to zero, which indicates that the distribu-
tions behave in a Gaussian way.

B. Effective diffusivity and cross-over time

We fit the MSD curves in Fig. 2(a) (main text) to
the solution [6] for generic Langevin dynamics - eqn (1)
in main text (see SI-§III for more details). This allows
us to estimate Deff and τ . When the particle size is held
constant, both Deff (Fig. 3(a)) and τ (Fig. 3(b)) increase
with E. coli concentration.

For very dilute concentrations φ� 1, particle-bacteria
interactions are mainly binary [7] and we expect the en-
hancement in diffusivity to scale linearly with concentra-
tion. An alternate way to explain the linear dependence
is to note that at low concentrations and in the absence of
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collective motion or anomalous density fluctuations, fluc-
tuations in bacterial concentration scale as

√
c as given

by the central limit theorem. The impulse due to these
fluctuations sets the length scale characterizing bacteria-
particle encounters; this length scale scales as

√
c and

thus the diffusivity scales as the square of this length
DA ∼ O(c). Indeed, our estimated values of Deff in-
creases linearly with bacterial concentration c, as shown
by the dashed-line in Fig. 3(a). The variation of τ with
concentration, however, does not follow a linear form.
Instead, Fig. 3(b) suggests possible saturation of τ for
suspensions of higher concentrations (but still dilute).

C. Comparison to previous experiments

The enhanced diffusion of passive particles in suspen-
sions of swimming microorganisms has been previously
verified in a variety of experimental techniques, includ-
ing particle tracking methods in films [2], dye transport
in microfluidic [8], and differential dynamic microscopy
in three-dimensional chambers [9]. Previous investigators
have proposed a linear relationship between the enhanced
diffusivity and bacteria concentration to interpret their
results [7, 9, 10] i,e., Deff = D0 + βUc where D0 is the
thermal diffusivity that follows the Stokes-Einstein rela-
tionship, U is the characteristic swimming speed (self-
propulsive speed) of the microorganism and the quantity
Uc has been called the active flux JA [9, 10]. By dimen-
sional arguments, it is clear that β has units (length)4.
Previous experimental investigations with E. coli have
assumed β is constant and has a magnitude between 5
to 13 µm4 [7–10]. A linear fit to Fig. 3(a) yields β ≈ 9
µm4 yields a reasonable fit consistent with the previous
measurements mentioned above.

We also note discrepancies that support the contention
that β is not really a constant, but varies with particle
size. Following the theory by Kasyap. et al. [7], we
rewrite β = L4D̄A, where L is the total length of the
bacteria (7.6 µm for cell body and flagella) and D̄A is
a particle size-dependent dimensionless diffusivity which
decays to zero at small particle diameter.

D. Spectral analysis

To quantify the velocity fluctuations, we measure the
speed v of individual particles as a function of time,
where the speed v = ∆r/∆t is set by the frame rate
∆t = 1/30 s. Next, a one-sided power spectra is then
determined for each particle in a frequency range of 0.1
to 15 Hz, which corresponds to 2∆t to 10 s. The power
spectra are normalized by N/2, where N is the num-
ber of data points. To determine an ensemble average
within an experimental sample, we average the power
spectra over individual particles, which have the same
frequency binning intervals. As shown in Fig. 4, the
power spectra are reasonably flat for varying E. coli con-
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FIG. 4. Spectral density of particle speeds at varying E.
coli concentrations of 0, 0.75, 1.5, and 7.5 ×109 cells/mL and
particle diameters of 2 µm and 39 µm.

centrations and particle diameters. At equilibrium, the
magnitude of the random thermal forcing, which appears
as white noise, sets the temperature T [6], such that

limt→∞v(t)v(t) = kBT
m , where m is the mass of the par-

ticle. In the the infinite time limit, the initial conditions
are forgotten.

Here, we find that the experimentally measured mag-
nitudes of the power spectra increases with E. coli con-
centration for d =2 µm. As predicted by the infinite time
limit, the increase in the magnitudes is consistent with
an enhanced effective temperature (Fig. 5(a) main text).
For d = 39 µm, the power spectra magnitude is reduced.
This is expected since the increase in the variance of the
particle speeds - i.e, the enhancement in the temperature
is insufficient to overcome the increased mass.

III. MSD FOR A DIFFUSING PARTICLE

We consider a simple model of a spherical particle that
undergoes an continuously diffusive process (due to both
thermal and active effects) involving a sequence of small
runs and random re-orientations. This is the case when
the particle is buffeted around by interactions with bac-
teria. These assumptions are consistent with the sample
trajectories shown in Fig. 5.

Let the particle be located at r(t) at time t and oriented
with an angle θ(t). For ease of analysis, we let the par-
ticle move at a characteristic constant speed v between
significant reorientations. The speed may be formally
considered a function of the concentration of the bacte-
ria and the particle size. The position and orientation
of the particle follows dr/dt = vt(t) and dθ/dt = η(t).
Here, η(t) is a zero-mean, delta-correlated Gaussian ran-
dom variable such that 〈η(t)η(t′)〉 = 2DRδ(t−t′) and t is
the instantaneous, local tangent to the trajectory. Note
that here DR is not equal to D0

R, the rotational diffusivity
in the absence of bacteria and purely due to Brownian ef-
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FIG. 5. Enhanced particle diffusion due to bacteria activity. Trajectories of 2 µm particles in a film of fluid (a) without and
(b) with bacteria (c = 0.75 × 109 cells/mL) reveal that particles in the presence of bacteria undergo larger magnitudes of
displacement.

fects. Application of the central limit theorem shows that
∆θ has zero mean and is distributed following a Gaus-
sian profile. The pdf (probability density function), ψ

is given by ψ(t,∆θ) = (1/4πtDR)
1
2 exp(− ∆θ2

4πtDR
) which

may then be readily used to calculate averages. The
mean square displacement (MSD) is obtained by eval-
uation of the following integral expression 〈|r(t + ∆t) −
r(t)|2〉 = v2

∫ t+∆t

t
dt′
∫ t+∆t

t
〈cos[θ(t′) − θ(t′′)]〉 dt′′ and is

found to be MSD(∆t) = 2
(
v2/DR

) (
t− 1−e−∆tDR

DR

)
.

The effective translational diffusivity is obtained by
now rewriting this expression. First, we introduce an av-
erage run time τ ≡ D−1

R , that characterizes the time for
the MSD to transition from ballistic to diffusive behav-
ior and is related to the time for the particle to forget
its initial orientation. We then introduce an effective
diffusivity Deff that is the sum of its value at zero con-
centration and an excess concentration dependent active
diffusivity Deff = D0 +DA(c). To leading order for small
concentration DA is linear in bacterial concentration c
when no collective motion exists. Adjusted for the two
dimensional nature of the motion, the MSD then writes
as

MSD(∆t) = 4 (D0 +DA) ∆t
(

1− τ

∆t

(
1− e−∆t

τ

))
.

(1)

Treating τ as a function of concentration, we take
the limit of c → 0 to obtain the formal solution in
the limit of zero concentration MSD(∆t)(c = 0) =
4D0∆t

(
1− τ0

∆t

(
1− e−∆t/τ0

))
where τ0 = τ(c = 0). Eqn

(1) is valid in both active and passive limits and has
indeed be used to investigate diffusion of particles in ac-
tive fluids and biofilms [2, 11]. The long lag time limit
taken when ∆t/τ � 1, gives us the asymptotic expression

MSD(∆t � τ) ∼ 4 (D0 +DA) ∆t − 4 (D0 +DA) τ with
corrections that are exponentially small. In the short lag
time limit as ∆t/τ � 1 we find the asymptotic expansion
MSD(∆t� τ) ∼ 2 (Deff) (∆t)2/τ .

An alternate analytical expression for the MSD has
been derived previously and used to interpret the diffu-
sion of active photo-colloids [12–14]:

MSD(∆t) = 4 (D0 +DA) ∆t−4DAτ
(

1− e−∆t/τ
)
. (2)

Comparison of eqn (2) with eqn (1) reveals the following
features. First the long time effective diffusivities Deff

predicted by the two expressions in the limit ∆t/τ →∞
are the same. Since DA = Deff − D0 and D0 is de-
fined (and not a fitting parameter), the values of the
active diffusivity obtained from both forms are the same.
The short time asymptote of (1) and (2) for small lag
time are however different. Equation (2) yields MSD
∼ 4 (D0 +DA) ∆t − 4DAτ∆t/τ ∼ 4D0∆t in contrast to
the superdiffusive (ballistic to leading order) asymptotic
form from eqn (1). Furthermore in the limit of zero bacte-
rial concentration when DA = 0, eqn (2) does not reduce
to the formal solution to the Langevin equation.

We have used both eqn (1) and (2) to fit our data.
Since D0 is not a fitting parameter but is given by the
analytical Stokes-Einstein relationship, we fit for DA and
τ . We find that eqn (1) gives a better fit for τ for the
two smallest particle sizes at small times. For other cases,
both equations yield comparable values of τ . The values
of DA obtained from the long time asymptotes are the
same for (1) and (2). Because of these considerations, we
have chosen to use the MSD expression given by eqn (1)
to analyze our data.
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IV. PREVIOUS THEORY FOR SMALL AND
LARGE PECLET NUMBER

Kasyap, Koch and Wu [7] recently presented a analyt-
ical theory supplemented by simulations of the diffusion
of passive, Brownian particles in three dimensional sus-
pensions of E. coli bacteria. They present an explicit
expression for the hydrodynamic particle diffusivity DA

resulting from bacteria-particle interactions. Their an-
alytical theory assumes that encounters are binary, ig-
nores steric interactions (which were however considered
in more detailed simulations) and uses two additional
simplifications - first that orientations of bacterium be-
fore and after a tumble are uncorrelated and second, that
the fluid velocity disturbance created by each bacterium
is small compared to its swimming speed, U .

Both the analytical theory and the simulations show
that the scaled hydrodynamic diffusivity, DA = (Deff −
D0)/cL4U is controlled by the two dimensionless param-
eters - the Peclet number, Pe ≡ UL/D0 (the ratio of the
time scale of bacterial swimming to the particle diffu-
sion time and τ∗ ≡ Uω−1

T /L, (the inverse of the tumble
frequency ωT to the time a bacterium takes to swim a
distance equal to its length L). In all our experiments,
we use the same strain of bacteria; thus, τ∗ is held fixed.
The theory predicts that DA is a monotonically increas-
ing function of τ∗ but a non-monotonic function of Pe.
Below, we briefly summarize the theoretical predictions
for small Pe� 1 and large Pe� 1.

Provided τ∗ ≥ O(1), as in our experiments, theory

suggests that DA ∼
√

Pe for Pe � 1. Thus the active
diffusivity DA ∼ cUL4(UL/D0)

1
2 ; in terms of particle

size d, this predicts DA ∼
√
d. We do not access this

small Peclet number regime in our experiments.

The asymptotic result for very large values of τ∗ � 1
with Pe � 1 corresponds to non-Brownian particles in
a suspension of non-tumbling bacteria. Both their ana-
lytical theory and simulations predict the enhancement
in diffusivity to asymptote to constant values that are
independent of the Peclet numbers as well as τ∗. For
finite values of τ∗ the value of DA as Pe → ∞ depends

only on τ∗ and follows DA ≈ α2

192πM2 f(τ∗), where α
and M are bacteria related geometry parameters and
f(τ∗) is a scalar function and controls the time scale
over which the velocity disturbances induced by swim-
ming bacteria stay correlated. The cells we use are wild
type (strain MG1655) with run times of roughly 1 second
and τ∗ = 1.8. From Fig. 5(b) in the main manuscript,
we find that for the largest Peclet number we attain,
DA ≈ 3.0 × 10−3. This is consistent with asymptotic
limits of DA ≈ 3.4×10−3 and 4.2×10−3 for α = 2/7 [15]
and M = 0.18 at τ∗ = 1 and 4, respectively [7].

V. QUALITATIVE ESTIMATE FOR THE
MAXIMUM EFFECTIVE PARTICLE

DIFFUSIVITY Deff

Our experimental data suggests that both the exis-
tence and location of the peak can be tuned by adjusting
c and d as independent parameters. We now consider a
minimal model that yields a quantitative prediction for
the existence as well as the location of the peak in Deff .

We first rewrite Deff to explicitly incorporate its linear
dependence on c:

Deff = D0 + (cL3UL)DA. (3)

Differentiating Deff with respect to Pe yelds

D′eff = (UL)

[
− 1

Pe2 + (cL3)D
′
A

]
. (4)

where primes denote differentiation. Setting eqn (4) to
zero, we conclude that a extremum (shown to be a max-
imum from the data) in Deff exists for

cL3 = (Pe2D
′
A)−1. (5)

The collapsed universal curve (Fig. 5(b) in the main
manuscript) depends on both Pe and τ∗; in our case τ∗

is a constant. Using the experimentally collapse curve,

we approximate the slope D
′
A by fitting our data (Fig.

5(b)) to the form

DA(Pe) ≈
[
A0 −

1

2
A1(PeA − Pe)2

]
. (6)

Here A0 = DA(PeA) with PeA being the Péclet number
at which DA is a maximum. In the general case, A0, A1

and PeA would be functions of τ∗. We fit the collapsed
DA data (Fig. 5(b)) for the range 200 < Pe < 4000 to
eqn (6) and obtain PeA ≈ 1000 and A1 ≈ 5×10−7. From

eqn (6), it follows that the slope is given by D
′
A(Pe) ≈

A1(PeA−Pe). Note that eqn (6) is the simplest analytical
form that allows us to model the variation in the vicinity
of the maximum. Of course, far from the maximum,
such a simple approximation will not be valid anymore
and higher order terms will be required.

We next estimate the magnitude and location of the
maximum Deff by substituting eqn (6) into eqn (5). The
Péclet number Pemax at which Deff is maximum is given
by the cubic equation

cL3A1(PeA − Pemax) = Pemax
−2. (7)

We are interested in how Pemax changes with c and so
we seek an approximate asymptotic real and physically
valid solution for Pemax.

Let δPe be a measure of the deviation from PeA defined
through Pemax = PeA − δPe. Note that Pemax < PeA

so that by definition δPe > 0. We substitute Pemax =



6

PeA − δPe into eqn (7), Taylor expand the right and left
hand sides, simplify the resulting expansions by utilizing
the conditions Pemax

2 � 1 and δPe � PeA and finally
retain terms to O(δPe). This then gives us the equation

(Pe3
AcL

3A1 − 2) δPe ≈ PeA. (8)

The constraint that δPe > 0 results in the inequal-
ity Pe3

AcL
3A1 > 2 for a valid solution to exist. Fur-

thermore, eqn (8) provides the shift in the peak, δPe
relative to PeA, when it exists. Using the expres-
sion for δPe from eqn (8) we obtain expressions for
the location of the peak Pemax and thereby its de-

pendence on c, Pemax = PeA

[
1−

(
1

Pe3
AcL

3A1−2

)]
, and

dmax
eff = dA

[
1−

(
1

Pe3
AcL

3A1−2

)]
is the corresponding lo-

cation in particle size dmax
eff where dA is the particle di-

ameter corresponding to PeA. In our case, plugging in
A1 ≈ 5× 10−7 and PeA ≈ 1000, yields

dmax
eff = dA

[
1−

(
1

5cL3 − 2

)]
(9)

Note that as c increases, dmax
eff increases, consistent with

our experimental observations (Fig. 3(a)).

The magnitude of the maximum effective diffusivity

Dmax
eff is thus evaluated as

Dmax
eff

UL = 1
PeA

+ cL3
(
A0 − A1

A2

)

where A2 = 2
Pe2

A

(
Pe3

AcL
3A1 − 2

)2
.

VI. SUPPLEMENTARY VIDEOS

A. Movie 1

This video is of 2 micron particles at equilibrium, in
the absence of bacteria. The video is played at real time.

B. Movie 2

This video is of 2 micron particles in the presence of
E. coli at bacterial concentration c = 1.5×109 cells/mL.
The video is played at real time.

C. Movie 3

This video is of a 39 micron particle in the presence
of E. coli at bacterial concentration (c = 1.5 × 109

cells/mL). The video is played at real time.

D. Movie 4

This video is of a 39 micron particle in the presence
of E. coli at bacterial concentration (c = 7.5 × 109

cells/mL). The video is played at real time. Even at
the highest bacterial concentration, there is no large-scale
collective behavior of the bacteria in the bulk.
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