Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Destruction and recovery of nanorod conductive network in polymer

nanocomposites via molecular dynamics simulation

Yangyang Gao¹, Dapeng Cao⁴, Youping Wu^{1,2,3}, Jun Liu^{1,2,3*}, Liqun Zhang^{1,2,3,4*}

¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China

²Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China

³Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, PRC

⁴State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China

^{*} Corresponding author: <u>zhanglq@mail.buct.edu.cn</u> or <u>liujun@mail.buct.edu.cn</u>

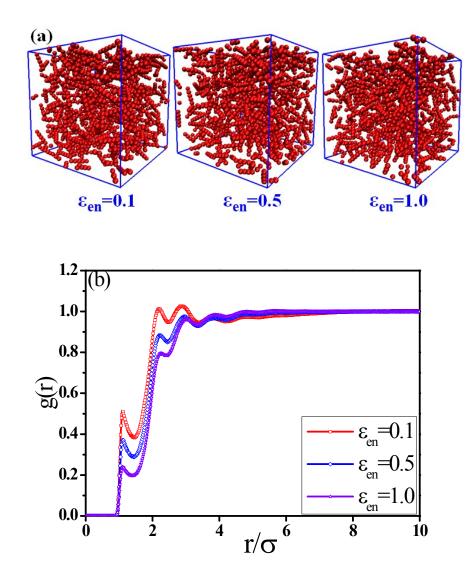
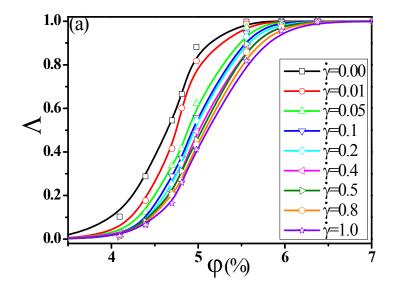
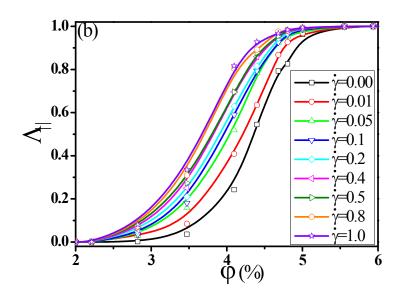




Fig. S1 (a) Snapshots of nanorods where the polymer chains are neglected for clarity; and (b) the inter-nanorod radial distribution function (RDF) for different interactions ε_{en} . (T^* =1.0, $\varphi=4.68\%$, M=3)

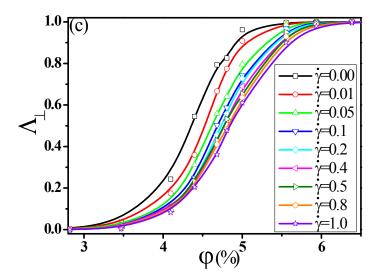
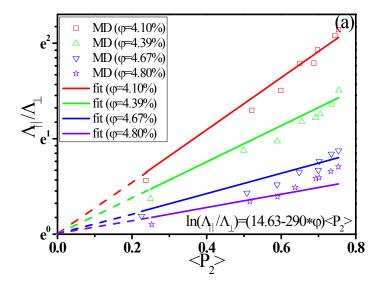



Fig. S2(a) Homogeneous conductive probability $\Lambda_{,}$ (b) directional conductive probability Λ_{\parallel} parallel to the shear direction, and (c) directional conductive probability Λ_{\perp} perpendicular to the shear direction of nanocompoites as a function of nanorod volume fraction φ for different shear rates \aleph . $(T^*=1.0, \mathcal{E}_{en}=0.5, M=3)$

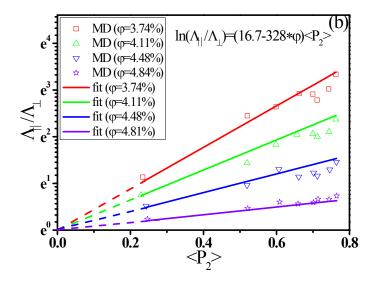


Fig. S3 The linear relation between the logarithm of anisotropy $\Lambda_{_{||}}/\Lambda_{_{\perp}}$ of conductive probability and the orientation of nanorod $< P_2 >$ for four nanorod volume fractions $\mathcal P$ for interaction (a) $\mathcal E_{en} = 0.1$ and (b) $\mathcal E_{en} = 1.0$. (T^* =1.0, M=3)