Supporting Information

Title: Bistable self-assembly in homogeneous colloidal systems for flexible modular architectures

Gabi Steinbach*, Dennis Nissen, Manfred Albrecht, Ekaterina Novak, Pedro A. Sanchez, Sofia S. Kantorovich, Sibylle Gemming, and Artur Erbe

Movie:

Field-induced transformation between staggered and compact three-particle cluster. External field pulses with field intensity of 1.2 mT and duration of 1 ms are applied.
The playback speed of the movie is accelerated by two with respect to the recording time.

Analytic expressions for the energies of three 3sd-particles

For a linear chain of three particles (meaning, that all three particle centers are on the y-axis, so $\varphi=\psi=0$ and equal to the polar angle of the third particle central dipole), we obtain the distance between the dipoles belonging to the nearest neighboring particles in the chain
$r^{c h-n n}=1+s_{i}^{2}+s_{j}^{2}-2 s_{i} s_{j} Z_{i j}^{c h}-2\left[s_{i} \cos (\beta i)-s_{j} \cos (\beta j)\right]$,
where $Z_{i j}^{c h}=\cos (\beta(i-j))$.
The distance between the dipoles in the next nearest neighboring (side particles) particles can be obtained as:
$r^{c h-s p}=4+s_{i}^{2}+s_{j}^{2}-2 s_{i} s_{j} Z_{i j}^{c h}-4\left[s_{i} \cos (\beta i)-s_{j} \cos (\beta j)\right]$.
Finally, the dipolar interaction in the linear chain of three particles has the form:

$$
\begin{aligned}
& U_{\text {total }}^{c h} \\
& \qquad=2 \sum_{i, j=-1}^{1} m_{i} m_{j}\left\{\frac{Z_{i j}^{c h}}{\left(r^{c h-n n}{ }_{i j}^{\frac{3}{2}}\right)^{\frac{3}{2}}}-3 \frac{\left[\cos (\beta i)+s_{j} Z_{i j}^{c h}-s_{i}\right]\left[\cos (\beta j)-s_{i} Z_{i j}^{c h}+s_{j}\right]}{\left(r^{c h-n n}{ }_{i j}\right)^{\frac{5}{2}}}\right\}+\sum_{i, j=-1}^{1},
\end{aligned}
$$

For a staggered configuration, the energy will also depend on the stagger angle θ between the center-center distances of the side particles.

The distance between the dipoles in the nearest neighboring particles in a staggered chain can be written as:
$r_{i(j) k}^{n n}=d^{2}+s_{j}^{2}+s_{k}^{2}-2 s_{k}\left[d \cos \left(\beta k+(-) \frac{\theta}{2}\right)+s_{i(j)} Z_{i(j) k}\right]+2 d s_{i(j)} \sin \left(\alpha+(-) \beta i(j)+\frac{\theta}{2}\right)$.
For the side particles, the distance between the dipoles is
$r_{i j}^{s p}=2 d^{2}+s_{i}^{2}+s_{j}^{2}+2 s_{i} s_{j} Z_{i j}-2 d^{2} \cos \theta+4 d \sin \frac{\theta}{2}\left[s_{i} \cos (\alpha+\beta i)+s_{j} \cos (\alpha-\beta j)\right]$,
where $Z_{i(j) k}=\sin (\alpha+(-) \beta(i(j)-k)), Z_{i j}=\cos (2 \alpha+\beta(i-j))$.
The energies are
$U_{i(j) k}^{n n}=m_{i(j)} m_{k}\left(\frac{z_{i(j) k}}{\left(r_{i(j) k}^{12}\right)^{\frac{3}{2}}}+(-) 3 \frac{\left[s_{k}-\operatorname{dcos}\left(\beta k+(-) \frac{\theta}{2}\right)-s_{i(j)} Z_{i(j) k}\right]\left[s_{i(j)}+d \sin \left(\alpha+(-) \beta i(j)+\frac{\theta}{2}\right)-s_{k} Z_{i(j) k}\right]}{\left(r_{i(j) k}^{12}\right)^{\frac{5}{2}}}\right)$,
$U_{i j}^{s p}=-m_{i} m_{j}\left\{\frac{z_{i j}}{\left(r_{i j}^{13}\right)^{\frac{3}{2}}}+3 \frac{\left[s_{i}+2 d \sin \frac{\theta}{2} \cos =(\alpha+\beta i)+s_{j} z_{i j}\right]\left[s_{j}+2 d \sin \frac{\theta}{2} \cos (\alpha-\beta i)-s_{i} z_{i j}\right]}{\left(r_{i j}^{13}\right)^{\frac{5}{2}}}\right\}$,
$U_{\text {total }}^{M}=\sum_{i, j, k=-1}^{1}\left\{U_{i k}^{12}+U_{i j}^{13}+U_{j k}^{23}\right\}$.
This energy has to be minimized with respect to α, for a given value of θ. The final candidate for the ground state is the ring, in which the central dipoles of three particles assume a triangular alignment. This energy depends on only one angle, characterizing the deviations of central moments from the sides of the triangle based on the dipoles' positions.
$r_{i j}^{r i n g}=d^{2}+s_{i}^{2}+s_{j}^{2}-2 s_{i} s_{j} Z_{i j}^{r_{i}^{i n g}}+2 d\left[s_{i} \sin \left(\frac{\pi}{6}+\varphi+\beta i\right)+s_{j} \cos (\varphi+\beta j)\right]$,

$U_{\text {total }}^{\text {ring }}=3 \sum_{i, j=-1}^{1} m_{i} m_{j}\left\{\frac{Z_{i j}^{\text {ring }}}{\left(r_{i j}^{r i n g}\right)^{\frac{3}{2}}}+3 \frac{\left[s_{i}-s_{j} Z_{i j}^{r_{i j n}^{i n g}}+d \sin \left(\frac{\pi}{6}+\varphi+\beta i\right)\right]\left[s_{j}-s_{i} Z_{i j}^{\text {ring }}+\operatorname{dcos}(\varphi+\beta j)\right]}{\left(r^{r i n g}\right)^{\frac{5}{2}}}\right\}$.
The three candidates - the chain, the staggered chain and the ring - provide ground states or local energy minima depending on the parameters β, m_{i}, s_{i} for $i=-1,0,1$, as is shown in the main text.

