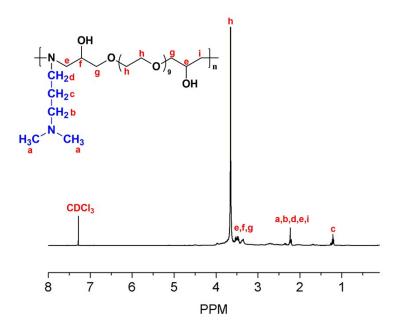
Supporting Information

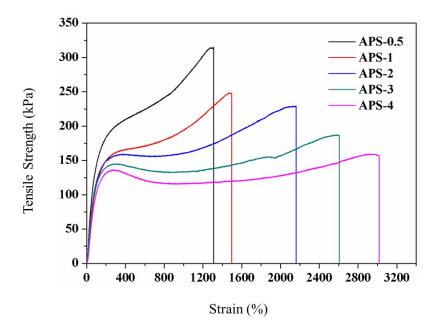
Revisiting the mechanism of redox-polymerization to build the hydrogel with excellent properties using a novel initiator

Sai Zhang †, Zixing Shi †*, Hongjie Xu†, Xiaodong Ma†, Jie Yin †, and Ming Tian ‡*
† School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composite

Materials, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China


Phone number: +86 21 54743268

Fax number: +86 21 54747445


Email: zxshi@sjtu.edu.cn

‡State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

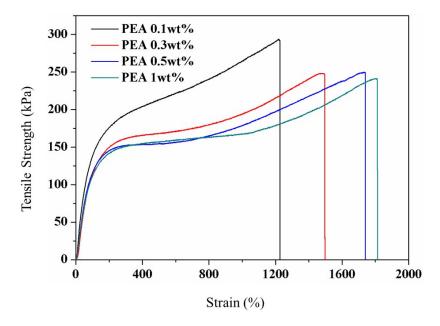

Figure S1. The process for synthesis of PEA. The weight averaged molecular weight M_w and the polydiversity index M_w/M_n were measured by GPC in the mobile phase of tetrahydrofuran (THF). The results showed that M_w was about 1.2*104 g/mol and M_w/M_n was about 1.5. Yield of PEA was nearly 98%.

Figure S2. ¹H NMR spectrum of synthesized PEA in CDCl₃. The peaks (a-i) in ¹H NMR spectrum of PEA can be assigned to the related proton. Because of the high reactivity between primary amino groups and epoxy groups, almost all epoxy groups were ring-opened by DMPA according to the integral of ¹H NMR spectra.

Figure S3. Effect of APS content for the mechanical properties of PEA-PAM hydrogels. The PEA content was fixed at 0.3wt% relatively to AAm monomer (5g). The water content was 70%. And the ratio of APS/PEA was changed from 0.5-4. The letter n of APS-n represents the related ratio of APS/PEA.

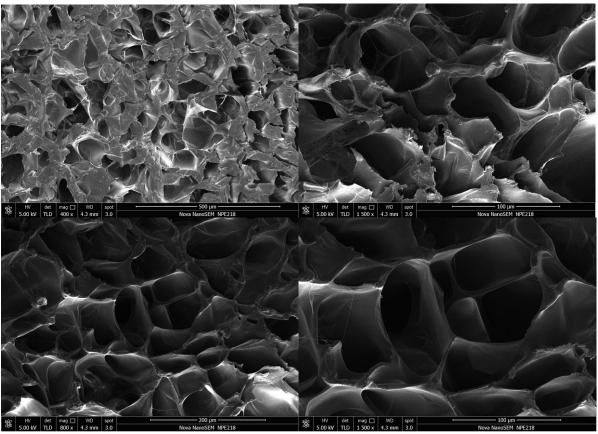


Figure S4. Effect of PEA content for the mechanical properties of PEA-PAM hydrogels. The amount of APS was fixed at 0.0057g. The PEA content was changed from 0.1wt%-1wt% relatively to AAm monomer (5g). The water content was 70%. The letter m of PEA-mwt% represents the weight ratio of PEA.

Table S1. Tensile modulus and elongation at break of the as-prepared APX-n and PEA-m sample.

	APS-n ^a					PEA-m ^b			
	APS-0.5	APS-1	APS-2	APS-3	APS-4	PEA-0.1	PEA-0.3	PEA-0.5	PEA-1
Modulus (MPa)	0.827	0.730	0.717	0.677	0.634	0.793	0.730	0.652	0.651
Elongation (%)	1296%	1510%	2186%	2617%	3020%	1218%	1510%	1746%	1759%

^aThe letter n of APS-n represents the related ratio of APS/PEA.

Figure S5. Representative SEM images of PEA-0.3wt%.

^bThe letter m of PEA-mwt% represents the weight ratio of PEA.