Supporting Information

Superior Performance Asymmetric Supercapacitors Based on

ZnCo₂O₄@MnO₂ Core-shell Electrode

Wenqin Ma, Honghong Nan, Zhengxiang Gu, Baoyou Geng, Xiaojun Zhang* Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P R China.

Experimental Section:

Synthesis of 3D porous spinous α-Fe₂O₃ on soft thin Fe substrate

In a typical procedure, a Fe foil $(1 \text{ cm} \times 1 \text{ cm})$ was cleaned from a consecutive ultrasonication in acetone, ethanol, distilled water. 5 mL Oleic,2 mL HCl (36%-38%) and 10 mL Ethanol were added and formed solution ,After that the prepared Fe foil being immersed in solution in a 60 mL autoclave. Meanwhile the autoclave was sealed and maintained at 60°C for 4h, and then cooled naturally to room temperature. The Fe substrate attached with brown things was washed with water and ethanol for several times before characterization. Finally as-synthesized materials were subsequent annealing at 400 °C in air.

Calculation methods:

The discharge specific capacitance (C_{sp}) or areal capacitance (C_a) in the three-electrode was calculated from the discharge curves using the following equation:^[1,2]

$$C_{sp} = \frac{It}{m\Delta V}$$
 $C_a = \frac{It}{S\Delta V}$

where **I** (A) is the discharge current, **t** (s) is the discharge time, ΔV (V) is the voltage interval of the discharge, and **m** (g) is the active material mass of the electrode. **S** is the geometrical area of the electrode.

The energy density and power density are calculated according to the following equations respectively^{:[3,4]}

$$\mathbf{E} = 0.5 \mathbf{C} \Delta \mathbf{V}^2 \qquad \mathbf{P} = \frac{\mathbf{E}}{\mathbf{t}}$$

Where **C** (F g⁻¹) is the specific capacitance, **E** (Wh kg⁻¹) is the energy density, **P** (W kg⁻¹) is the power density, **I** (A) is the discharge current, **t** (s) is the discharge time, and Δ **V** (V) is the potential window of discharge.

For supercapacitors, the charge balance between the two electrodes will follow the relationship $\mathbf{q}^+ = \mathbf{q}^-$, where \mathbf{q}^+ means the charges stored at the positive electrode, \mathbf{q}^- means the charges stored at the negative electrode. The charge stored by each electrode usually depends on the specific capacitance (**C**), the potential window for the charge/discharge process ($\Delta \mathbf{E}$), and the mass of the electrode (**m**) following Equation: $\mathbf{q} = \mathbf{C} \times \Delta \mathbf{E} \times \mathbf{m}$. The mass ratio between the positive and negative electrodes needs to follow: ^[5]

$$\frac{\mathbf{m}_{+}}{\mathbf{m}_{-}} = \frac{\mathbf{C}_{-} \times \Delta \mathbf{E}_{-}}{\mathbf{C}_{+} \times \Delta \mathbf{E}_{+}}$$

Therefore, the optimal mass ratio between such two electrodes can be determined by

the specific capacitance values and potential windows. The $ZnCo_2O_4@MnO_2$ to α -Fe₂O₃ mass ratio was adjusted to be 0.92:1. So the total mass of the two active electrode materials is 2.5 mg cm⁻².

Figure S1 Electrochemical characterizations of the hierarchical $ZnCo_2O_4@MnO_2$ core-shell NTs arrays grown on Ni foam:charge-discharge voltage profiles at different current densities.

Figure S2 Impedance Nyquist plots of the $ZnCo_2O_4$ NW arrays and the hierarchical $ZnCo_2O_4@MnO_2$ core-shell NTs arrays grown on Ni foam at open circuit potential.

Figure S3 (a) Typical FESEM images of the 3D porous α -Fe₂O₃; (b) Galvanostatic charging/discharging curves of the 3D porous α -Fe₂O at different current densities.

Electrode material	Current density	Specifc capacitance	Reference
ZnCo ₂ O ₄ @MnO ₂ NTs	12 mA cm^{-2}	2.32 F cm^{-2}	This our work
Co ₃ O ₄ -MnO ₂ NW/nanosheet	12 mA cm^{-2}	$0.56 \mathrm{F cm^{-2}}$	Ref. 6
MnO ₂ -NiO NWs	12 mA cm^{-2}	$0.35 \mathrm{F cm^{-2}}$	Ref. 7
Co ₃ O ₄ -NiO NWs	12 mA cm^{-2}	$1.35 \mathrm{F cm^{-2}}$	Ref. 8
ZnCo ₂ O ₄ NWs	12 mA cm^{-2}	$0.866 \mathrm{F cm^{-2}}$	Ref. 9

Table 1 Summarization of the supercapacitor performance of different electrode

Reference:

material.

- 1. J. Yan, E. Khoo, A. Sumboja, P. S. Lee, ACS Nano, 2010, 4, 4247.
- 2. C. Guan, X. L. Li, Z. L. Wang, X. H. Cao, C. Soci, H. Zhang, H. J. Fan, Adv. Mater.,

2012, **24**, 4186.

- W. Chen, R. B. Rakhi, L. B. Hu, X. Xie, Y. Cui, H. N. Alshareef, *Nano Lett.*, 2011, 11, 5165.
- L. F. Chen, X. D. Zhang, H. W. Liang, M. G. Kong, Q. F. Guan, P. Chen, Z. Y. Wu,
 S. H. Yu, ACS Nano, 2012, 6, 7092.
- 5. Z. J. Fan, J. Yan, T. Wei, L. J. Zhi, G. Q. Ning, T. Y. Li, F. Wei, *Adv. Funct. Mater.*, 2011, **21**, 2366.
- 6. J. H. Kim, S. H. Kang, K. Zhu, J. Y. Kim, N. R. Neale and A. J. Frank, *Chem. Commun.*, 2011,47, 5214.
- 7. J. P. Liu, J. Jiang, M. Bosman and H. J. Fan, J. Mater. Chem., 2012, 22, 2419.
- 8. X. H. Xia, J. P. Tu, Y. Q. Zhang, X. L. Wang, C. D. Gu, X. B. Zhao and H. J. Fan, ACS Nano, 2012, **6**, 5531.
- S.B Wang, J. Pu, Y. Tong, Y.Y. Cheng, Y. Gao and Z. H. Wang, J. Mater. Chem. A 2014, 2,5434.