Supporting Information

Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect

Jian Yang, Yan Dai, Xiangyang Zhu, Zhe Wang, Yongsheng Li, Qixin Zhuang, Jianlin Shi, and Jinlou Gu*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Fax: +86-21-64250740; Tel: +86-21-64252599 E-mails: jinlougu@ecust.edu.cn

Fig. S1 N_2 adsorption-desorption isotherms of the as-synthesized UiO-66- NH_2 nanoparticles.

Fig. S2 TEM images of (A) UiO-66-NH₂ and (B) UiO-66-NH₂ (P). UiO-66-NH₂ (P) was the collected powder sample after contacting UiO-66-NH₂ with phosphate (P : Zr molar ratio was 0.6:1 in the solution) for 90 min.

Fig. S3 TGA profile for the as-synthesized UiO-66-NH₂ recorded under air flow.

Fig. S4 The DR-UV-Vis spectra of UiO-66-NH₂ (a, blue) and BDC-NH₂ ligand (b, red) at room temperture.

Fig. S5 The evolvement of the fluorescent emmision from UiO-66-NH₂ suspension with a time duration of 0 (Black), 1 (Red) and 3 (Blue) days. The Fluorescence stability measurement was conducted in HEPES solution (pH = 7, 20 mmol) with UiO-66-NH₂ concentration of 50 mg L⁻¹. To make the curves more clearly, here we used the wider slit for fluorescence measurement than that used in Fig. 2.

Fig. S6 Fluorescence response of BDC-NH₂ ligand towards different anions (100 μ M for each). I₀ and I denote the fluorescence intensity of BDC-NH₂ in HEPES buffer solution without and with anions, respectively.

Fig. S7 Wide scan XPS spectra of A) UiO-66-NH₂ and B) UiO-66-NH₂(P).

Fig. S8 The magnified O1s XPS spectra of the (A) UiO-66-NH₂ and (B) UiO-66-NH₂(P).

Fig. S9 N_2 sorption isotherms of UiO-66-NH₂ (Black) and UiO-66-NH₂(P) (Red). UiO-66-NH₂ (P) was the collected powder samples after contacting UiO-66-NH₂ with phosphate (P : Zr molar ratio was set as 0.6:1 in the solution) for 90 min.