Supporting Information

A Bulky and Flexible Electrocatalyst for Highly Efficient Hydrogen Evolution based on the Growth of MoS₂ Nanoparticles on Carbon Nanofibers Foam

By Xin Guo,^{&,a} Guo-lin Cao,^{&,a} Fei Ding,^b Xinyuan Li,^a Shuyu Zhen^a, Yi-fei Xue,^a Yiming Yan^{*a}, Ting Liu^{*a}, and Ke-ning Sun^{*a}

a: Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
b: National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin, 300381, People's Republic of China
E-mail: bitkeningsun@163.com; bityanyiming@163.com; liuting@bit.edu.cn
Tel&Fax:0086-10-68918696

Figure S1. SEM image of the MoS₂/CNFs hybrid by replacing the DMF with water as solvent.

Figure S2. Polarization curve of MoS_2 nanoparticles physically mixed with carbon black (7:3 w/w) and $MoS_2/CNFs$ hybrid by replacing the DMF with water as the solvent.

Figure S3. (a) XRD patterns of MoS_2 nanoparticles and $MoS_2/CNFs$ composite. (b) Raman spectroscopy of $MoS_2/CNFs$ composite.

Figure S4. TG curves of the $MoS_2/CNFs$, the bare MoS_2 nanoparticles and the bare CNFs.

Figure S5. The compression-recovery processes of $MoS_2/CNFs$.

Figure S6. XRD pattern of (a) the as-prepared $MoS_2/CNFs$ and (b) the $MoS_2/CNFs$ composite after annealed at 800 °C for 2 h.

Figure S7. The polarization curves and the Tafel slope (inset) of as-prepared $MoS_2/CNFs$ and $MoS_2/CNFs$ annealed at 800 °C.

Figure S8. The turnover frequencies and the cyclic voltammograms (inset) of asprepared MoS₂/CNFs and MoS₂/CNFs annealed at 800 °C.

Assessment of turnover frequency (TOF)

The turnover frequencies (in s⁻¹) were calculated with the following equation:

$$TOF = \frac{i \ 1}{Fn2}$$

I - Current (in A) during the linear sweep measurement.

F- Faraday constant (in C mol⁻¹).

n - Number of active sites (in mol).

The factor 1/2 in the equation represents that two electrons are required to form one hydrogen molecule from two protons $(2H^+ + 2e^{-1} = H_2)$.

Figure S9. The durability test of the 3D MoS₂/CNFs electrode.

Figure S10. The GC curve to detect gas production at the potential of -0.35 V (vs. RHE).

Table S1. Comparion of HER performance in acidic media for $MoS_2/CNFs$ with other MoS_2 -based HER electrocatalysts.

Catalyst	Tafel slope (mV/dec)	Current density (i)(m A cm ⁻²)	Overpotential at the corresponding	Referenc e
MoS control	185	(I)(IIIA CIII) 71	200	(6)
sponge	105	/1	200	(0)
double-gyriod	50	2	190	(7)
MoS ₂ /FTO				
MoO ₃ -MoS ₂ /FTO	50-60	10	300	(8)
MoS ₂ /mesoporous	42	100	200	(18)
graphene				
MoS _x /graphene -				
protected 3D Ni	42.8	45	200	(19)
foams				
MoS ₂ nanoflower	95	10	250	(20)
/rGO				
MoS ₂ /CNT	44.6	14	200	(21)
MoS ₂ /RGO	41	10	150	(23)
MoS ₂ /CNF fiber	45	25	120	(25)
mats				
MoS ₂ /CNFs	44	16	230	This work

Supplementary Movies

Movie S1. This movie shows $MoS_2/CNFs$ foam operated from +0.12 V to -0.23 V *vs*. RHE to drive HER.

Movie S2. This movie shows pristine CNF operated from +0.12 V to -0.23 V vs. RHE to drive HER.