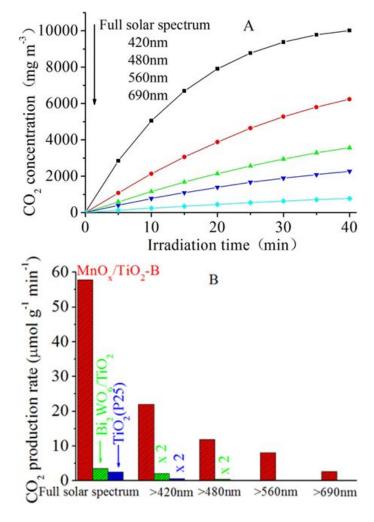

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015


Supporting Information

$Synergetic\ Effect\ between\ Photocatalysis\ on\ TiO_2\ and\ Solar\ Light\ Driven\ Thermocatalysis\ on\ MnO_x/TiO_2\ Nano\ Composites$

Yan Ma, Yuanzhi Li*, Mingyang Mao, Jingtao Hou, Min Zeng, Xiujian Zhao State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan 430070, P. R. China.

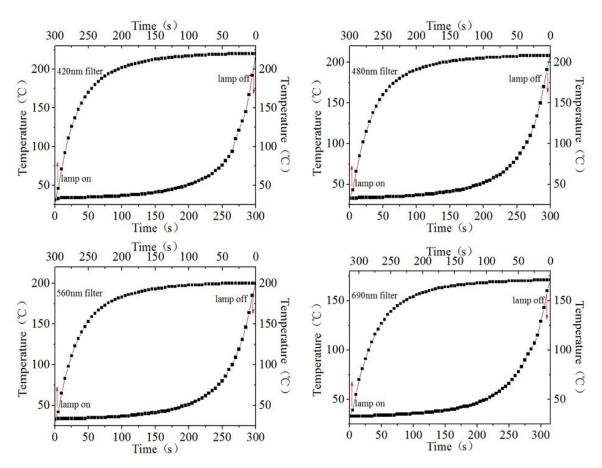


Figure S1. XRD patterns of TiO_2 (P25) (a), MnO_x/TiO_2 -A (b), MnO_x/TiO_2 -B (c), and MnO_x/TiO_2 -C (d): A-anatase, R-rutile.

Figure S2. Time course of CO_2 concentration for benzene oxidation on the MnO_x/TiO_2 -B (A), r_{CO2} (B) for benzene oxidation on MnO_x/TiO_2 -B, $TiO_2(P25)$, and Bi_2WO_6/TiO_2 under the full solar spectrum and visible-infrared irradiation by using different cut-off filters.

Under the visible-infrared irradiation above 420 nm, MnO_x/TiO_2 -B exhibits efficient catalytic activity for benzene oxidation. In contrast, benzene is slowly oxidized on both $TiO_2(P25)$ and Bi_2WO_6/TiO_2 , r_{CO2} of MnO_x/TiO_2 -B (21.93 μ mol g⁻¹ min⁻¹) is 75.8, 21.2 time higher than that of $TiO_2(P25)$, Bi_2WO_6/TiO_2 , respectively. Under the visible-infrared irradiation above 480 nm, MnO_x/TiO_2 -B shows catalytic activity for benzene oxidation, and its r_{CO2} is 11.92 μ mol g⁻¹ min⁻¹. However, in this case, benzene cannot be oxidized to CO_2 on $TiO_2(P25)$. Although benzene can be slowly oxidized to CO_2 on Bi_2WO_6/TiO_2 , r_{CO2} of Bi_2WO_6/TiO_2 is very low (0.24 μ mol g⁻¹ min⁻¹), 49.0 times lower than that of MnO_x/TiO_2 -B. Under the visible-infrared irradiation above 560 nm, MnO_x/TiO_2 -B still exhibits catalytic activity for benzene oxidation, and its r_{CO2} is 8.03 μ mol g⁻¹ min⁻¹. In contrast, no CO_2 is detected for benzene oxidation on Bi_2WO_6/TiO_2 , suggesting that benzene cannot be oxidized to CO_2 on Bi_2WO_6/TiO_2 in this case. Even under the visible-infrared irradiation above 690 nm, MnO_x/TiO_2 -B shows catalytic activity for benzene oxidation with r_{CO2} of 2.64 μ mol g⁻¹ min⁻¹, which is comparable to that of Bi_2WO_6/TiO_2 with the full solar spectrum irradiation ($r_{CO2} = 3.53 \mu$ mol g⁻¹ min⁻¹).

Figure S3. Temporal change of the temperature on MnO_x/TiO_2 -B under the visible-infrared irradiation by using different cut-off filters and after switching off the Xe lamp.