## **Supporting Information**

## High Performance H<sub>2</sub> Evolution Realized in 20-μmthin Silicon Nanostructured Photocathode

Jin-Young Jung, Min-Joon Park, Xiaopeng Li, Jong-Ho Kim, Ralf B. Wehrspohn\*, and Jung-Ho Lee\*

Lee

<sup>a</sup>Departments of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, Republic of Korea

<sup>b</sup>Max-Planck Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

Email: jungho@hanyang.ac.kr



**Figure S1.** (a) Onset voltage  $(V_{ph})$  for planar Si as a function of substrate thickness (W). (b) Saturated photocurrent density  $(J_{ph})$  and effective minority carrier lifetime  $(\tau_{eff})$ . Generally,  $\tau_{eff}$  is expressed as follows:  $1/\tau_{eff}=1/\tau_{bulk}+1/\tau_{surf}$ , where  $\tau_{bulk}$  is the bulk minority carrier lifetime.

Assuming that the  $\tau_{bulk}$  value (~1 ms for our silicon wafers) is negligible,  $\tau_{eff}$  can be approximated as  $\tau_{surf}$ , i.e.,  $\tau_{eff} \approx \tau_{surf}$ .



**Figure S2**. Nyquist plot of impedance spectroscopy data for planar Si as a function of thickness (W) at 20  $\mu$ m (black), 30  $\mu$ m (red), and 50  $\mu$ m (blue), and 100  $\mu$ m (cyan).



**Figure S3**. (a) Light absorption spectra and of Si NH (thick lines) and planar Si (thin lines) for various W values of 20, 30, 50, and 100  $\mu$ m. (b) The absorption enhancement spectra of tapered SiNH with varying W. Tapered Si NH structures exhibit a gradual change of effective refractive indexes, which act as antireflective dielectric multilayers delivering superior broadband anti-reflectance.



Figure S4. (a) J-V curve of Pt NPs/Si NHs photocathodes (20  $\mu$ m-thick) and (b) magnification of J-V curve around the 0-1 mA/cm<sup>2</sup> photocurrent.



**Figure S5**. (a) Nyquist plots of impedance spectroscopy data for Pt NPs-planar Si as a function of W. (b) The overall amount of  $R_{sc}$  and  $R_{ss}$  reduction for planar Si after coating Pt NPs. The greatest reduction in charge transfer resistance was observed for the thinnest planar Si.



**Figure S6**. Saturated photocurrent values measured as a function of wafer thickness in the saturated region (1.5 V vs. RHE) of SiNHs and Pt NPs/SiNHs.



**Figure S7**. Long-term stability test of 20-µm-thin Si photocathode employing Pt/Si NHs at 0 V vs. RHE. Insets show J-V curves before and after the 10 hr stability test.



Figure S8. J-V curve of SiNH photocathode as a function of Pt deposition time.