Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution

Yufei Zhao,^{a,b} Bing Sun,^a Xiaodan Huang,^a Hao Liu,^a Dawei Su,^a Kening Sun,^{*b}

Guoxiu Wang*a

¹Center for Clean Energy Technology, School of Chemistry and Forensic Science, Faculty of

Science, University of Technology, Sydney, Sydney, NSW 2007, Australia.

Email: Guoxiu.Wang@uts.edu.au

²Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemical

Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, China.

E-mail: bitkeningsun@163.com

Figure S1 SEM image of silica nanorod templates for the synthesis of PGE.

Figure S2 Nitrogen adsorption/desorption isotherm of (a) PGE, (b) PGE-CoO and (c) GE-CoO.

Figure S3 Low magnification SEM image of PGE-CoO.

Figure S4 Element mapping of PGE-CoO.

Figure S5 SEM images of pure CoO and GE-CoO.

Figure S6 Nyquist plots of the PGE-CoO, GE-CoO and CoO modified electrodes in 0.1 M KOH solution.

Figure S7 Electrochemical capacitance measurements: Cyclic voltammograms (CV) are performed in 0.1 M KOH solution in a potential window without faradaic processes, (a) PGE-CoO, (b) GE-CoO.

Figure S8 (a) Equivalent electrical circuit used to model the OER process on PGE-CoO-modified GC electrode at various overpotentials, (b) The square symbols are experimental data and the red solid line are modelled by (a), (c) the low-frequency charge transfer resistance (R_{ct}) and constant phase element (C_{dl}) as a function of the OER overpotentials for PGE-CoO-modified GC electrode in 0.1 M KOH.

Figure S9 SEM images of PGE-CoO and GE-CoO after stability test.