Improved photovoltaic performance of star-shaped molecules with triphenylamine core by tuning substituted position of carbazolyl at terminal

Pei Zhou,^a Dongfeng Dang,^a Manjun Xiao,^{a,b} Qiong Wang,^a Juan Zhong,^a Hua Tan,^a Yong Pei,^a RenqiangYang,^{b*} Weiguo Zhu^{a*}

^a Department of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in the Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China

^b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China

> Corresponding author: Prof. Weiguo Zhu; Renqiang Yang Tel: +86-731-58293377 Fax: +86-731-58292251 E-mail addresses: zhuwg18@126.com

Fig. S1. TGA (a) and DSC (b) curves of TPA(BT-2Cz) ₃ and TPA(BT-3Cz) ₃ with a heating
rate of 10 °C/min under an inert atmosphere2
Fig. S2. Current density-voltage characteristics of the TPA(BT-2Cz) ₃ and TPA(BT-3Cz) ₃
based OSCs at different D/A ratios under the illumination of AM 1.5 G 100 mW/cm ² 4
Synthesis of the compounds4
Synthesis of 3-bromo-9-octylcarbazole (2)
Synthesis of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole (3)6
Synthesis of 3-(7-bromobenzo[c][2,1,3]thiadiazol-4-yl)-9-octylcarbazole (Br-BT- 3Cz).6
Synthesis of 2-bromo-9-octylcarbazole (6)7
Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole (7)7
Synthesis of 2-(7-bromobenzo[c][2,1,3]thiadiazol-4-yl)-9-octylcarbazole (Br-BT- 2Cz)8
Synthesis of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amine
NMR and Maldi Toff MS9

Fig. S2. Current density-voltage characteristics of the TPA(BT-2Cz)₃ and TPA(BT-3Cz)₃ based OSCs at different D/A ratios under the illumination of AM 1.5 G 100 mW/cm².

Synthesis of the compounds

Synthesis of 3-bromo-9-octylcarbazole (2)

To a solution of 3-bromo-9H-carbazole (2.16 g, 8.78 mmol) in degassed NaOH (20 mL, wt 50%) and toluene (100 mL) was added 1-bromooctane (1.86 g, 9.64 mmol). The mixture was then heated to 80 °C and stirred for 16 h under the atmosphere of nitrogen. After cooled down to room temperature (RT), the resulting mixture was poured into 50 mL water, then extracted with dichloromethane (DCM) three times (30 mL \times 3) and washed with water (100 mL \times 3). The combined organic layer was dried over anhydrous magnesium sulfate (MgSO₄) and after the filtration, the residue was purified by column chromatography on silica gel using petroleum ether (PE) as eluent

to give compound **2** as light yellow oil (2.2 g, yield 70.00%). ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.20 (s, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 7.1 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 9.0 Hz, 2H), 4.25 (t, J = 9.2 Hz, 2H), 1.99–1.75 (m, 2H), 1.38–1.1 (br, 10H), 0.84 (t, J = 8.0 Hz, 3H).

Synthesis of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole (3)

To a solution of 3-bromo-9-octylcarbazole (**2**) in 60 mL dry 1,4-dioxane was added bis(pinacolato)diboron (3.12 g, 12.28 mmol), potassium acetate (4.81 g, 49.12 mmol) and [1,10-bis(diphenylphosphino)-ferrocene]dichloroplladium (30 mg, 0.18 mmol) under the atmosphere of nitrogen. The mixture was then heated to 80 °C and stirred for 24 h. After that, the mixture was extracted with DCM and the combined organic layer was dried over anhydrous MgSO₄. The solvent was then removed off and the residue was passed through a flash silica gel column using DCM-PE (*V/V*=1:5~1:3) as the eluent to give compound **3** as yellow oil (2.50 g, yield 70.22%). ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.73 (s, 1H), 8.27 (d, *J* = 7.7 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 7.4, 4H), 4.43 (t, *J* = 7.2 Hz, 2H), 2.01–1.88 (m, 2H), 1.50–1.35 (br, 12H), 1.35–1.10 (m, 10H), 0.86 (t, *J* = 9.7 Hz, 3H).

Synthesis of 3-(7-bromobenzo[*c*][2,1,3]thiadiazol-4-yl)-9-octylcarbazole (Br-BT-3Cz)

To a mixture of compound **3** (2.5 g, 6.17 mmol) and 4,7-dibromobenzo[c][2,1,3] thiadiazole (2.71 g, 9.26 mmol) in a degassed solution of toluene (100 mL), anhydrous ethanol (20 mL) and potassium carbonate aqueous solution (2 M, 15 mL) was added tetrakis(triphenylphosphine)palladium [Pd(PPh₃)₄] (212 mg, 0.18 mmol). The

mixture was heated to 80 °C for 24 h under nitrogen. After cooled down to RT, the mixture was poured into water (100 mL) and extracted with DCM three times (3 × 50 mL). Then the combined organic layer was dried over anhydrous MgSO₄ and the solvent was removed off by rotary evaporation. After that the residue was passed through a flash silica gel column using DCM- PE (V/V=1:5~1:3) as the eluent to give compound **Br-BT-3Cz** as orange yellow solid. (2.15 g, yield 71.7%). ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.62 (s, 1H), 8.18 (d, J = 7.7 Hz, 1H), 8.03 (d, J = 9.5 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.61–7.41 (m, 3H), 7.34–7.22 (m, 1H), 4.35 (t, J = 7.1 Hz, 2H), 2.05–1.79 (t, 2H), 1.48–1.15 (m, 10H), 0.87 (t, J = 6.4 Hz, 3H).

Synthesis of 2-bromo-9-octylcarbazole (6)

Compound **3** was prepared according to the synthetic procedure of compound **2** with a yield of 68.60% as yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.06 (d, J =7.2 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.54 (s, 1H), 7.48 (t, J = 6.7 Hz, 1H), 7.40 (d, J =7.5 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.28–7.20 (br, 1H), 4.24 (t, J = 6.2 Hz, 2H), 1.97–1.77 (br, 2H), 1.35–1.25 (br, 10H), 1.01–0.75 (br, 3H).

Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole (7)

Compound **4** was prepared according to the synthetic procedure of compound **3** with a yield of 70.60% as light yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.19-8.02 (br, 2H), 7.88 (s, 1H), 7.69 (d, J = 4.6 Hz, 1H), 7.55–7.36 (m, 2H)., 7.30–7.13 (m, 1H), 4.47–4.24 (br, 2H), 2.00–1.76 (br, 2H), 1.50–1.30 (br, 12H), 1.30–1.14 (br, 10H), 0.96–0.76 (br, 3H).

Synthesis of 2-(7-bromobenzo[*c*][2,1,3]thiadiazol-4-yl)-9-octylcarbazole (Br-BT-2Cz)

It was prepared according to the synthetic procedure of compound **Br-BT-3Cz** with a yield of 69.20% as yellow solid. ¹H NMR (400 MHz, CDCl₃, TMS, δ_{ppm}): 8.22 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 7.7 Hz, 1H), 8.00 (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), δ 7.71 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.32 –7.20 (m, 1H), 4.38 (t, J = 7.0 Hz, 2H), 2.10–1.81 (m, 2H), 1.49–1.11 (m, 10H), 0.83 (t, J = 6.7 Hz, 3H).

Synthesis of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amine

To a solution of tris(4-bromophenyl)amine (1.0 g, 2.1 mmol), bis(pinacolato) diboron (3.2 g, 12.6 mmol) and potassium acetate (6.15 g, 62.8 mmol) in 60 mL dry 1,4-dioxane were added [1,10-bis(diphenylphosphino)-ferrocene] dichloroplladium (51 mg, 0.06 mmol) under nitrogen. The mixture was then heated to 80 °C for 24 h. After cooled to RT, the mixture was extracted with DCM three times (3×50 mL) and the combined organic layer was dried over anhydrous MgSO₄. After that the solvent was removed off and the residue was passed through a flash silica gel column using DCM- PE (*V/V*=1:1) as the eluent to give white solid (0.92 g, yield 70.3%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 6.97 (d, *J* = 8.6 Hz, 6H), 7.68 (d, *J* = 8.2 Hz, 6H), 1.34 (s, 36H).

NMR and Maldi Toff MS

