Supporting Information

Design and synthesis of high performance LiFePO₄/C nanomaterial for lithium ion batteries assisted by a facile H⁺/Li⁺ ion exchange

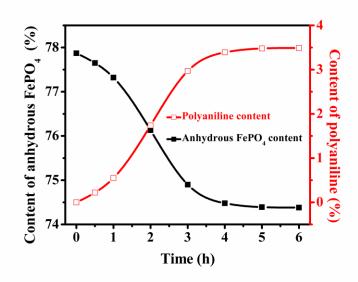
Hongbin Wang,^a Lijia Liu,^a Runwei Wang,^a Daliang Zhang,^a Liangkui Zhu,^a Shilun Qiu,^a Yingjin Wei,^b Xu Jin,^c and Zongtao Zhang^{a,b,*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,

Changchun, 130012, P. R. China

^b Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education),

Jilin University, Changchun 130012, P. R. China


^c Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, P.

R. China

Corresponding Author

*E-mail: zzhang@jlu.edu.cn.

Supplementary Figures

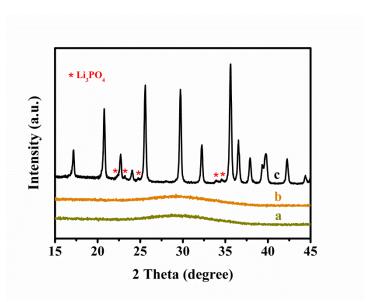
Figure S1. The mass content curves of time-consumed test for anhydrous FePO₄ and polyaniline in FePO₄-PANI nanocomposites aging for different times (0-6 h).

In the beginning (aging for 0 h), the visible precipitate could be totally regarded as hydrated FePO₄, as polyaniline barely appeared at this moment. According to result of TG test, the content of anhydrous FePO₄ in the hydrated FePO₄ is 77.87 wt. %, indicating that the chemical formula of hydrated FePO₄ should be accurately described as FePO₄ 2.384H₂O. After aging for 5 h, the content of anhydrous FePO₄ fell to 74.39 wt. %. Assuming that one proton per hydrated FePO₄ formula unit has been replaced by Li⁺, the thermal decomposition procedures of as-synthesized FePO₄-PANI and Li-FePO₄-PANI nanocomposites can be theoretically described as follows:

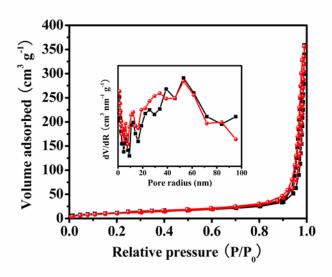
$$FePO_4 2.384 H_2O-PANI \xrightarrow{\Delta} FePO_4 + 2.384 H_2O (g) + Q (g)$$

$$\tag{1}$$

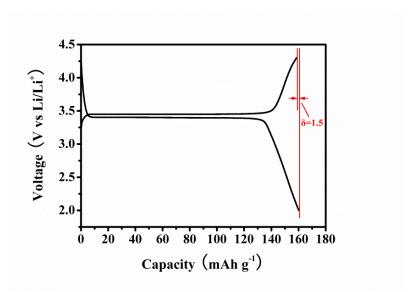
$$FePO_4 0.5 \text{ Li}_2O 1.884 \text{ H}_2O-PANI \xrightarrow{\Delta} 1/3 \text{ Li}_3Fe_2(PO_4)_3 + 1/6 \text{ Fe}_2O_3 + 1.884 \text{ H}_2O (g) + Q (g)$$
 (2)

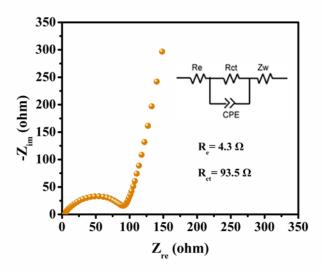

Here, Q represents the gas decomposition products of polyaniline. According to the Equation (1), the content (x) of polyaniline can be calculated by the following formula:

$$\frac{M(\text{FePO}_4)}{M(\text{FePO}_4) + 2.384 \text{ M(H}_2\text{O})} \times (1-x) = 74.39 \text{ }\%$$


where M (A) represents the molar mass of A. Thus the newly formed polyaniline accounts for 4.47 wt. % of FePO₄-PANI. Analogously, based on Equation (2), theoretical weight loss (y) of Li-FePO₄-PANI was calculated to be 20.68 wt. % by the following formula:

$$\frac{1/3 \text{ M(Li}_3\text{Fe}_2(\text{PO}_4)_3)+1/6 \text{ M(Fe}_2\text{O}_3)}{1/3 \text{ M(Li}_3\text{Fe}_2(\text{PO}_4)_3)+1/6 \text{ M(Fe}_2\text{O}_3)+1.884 \text{ M(H}_2\text{O})} \times (1-4.47 \%) = (1-y)$$


Hence, considering known total weight loss (25.61 wt. %) of FePO₄-PANI, the theoretical weight loss of Li-FePO₄-PANI should be 4.93 wt. % lower than that of FePO₄-PANI.


Figure S2. XRD patterns of a) pure hydrated $FePO_4$ (lack of PANI), b) Li-FePO₄ (H $^+$ /Li $^+$ ion exchange for 2 h), c) LiFePO₄/C material containing Li₃PO₄ impurity synthesized from Li-FePO₄ intermediate.

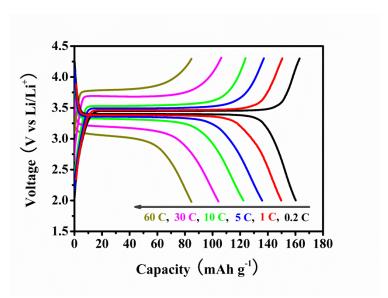

Figure S3. N₂ absorption-desorption isotherms of (dark) FePO₄-PANI and (red) Li-FePO₄-PANI nanocomposites. Inset shows corresponding pore size distributions.

Figure S4. First charge and discharge curves of LiFePO₄/C nanomaterial tested at 0.2 C rate. The capacity in initial charge is found to be 1.5 mAh g⁻¹ lower than that of discharge, reflecting a slight deficiency of Li in LiFePO₄/C nanomaterial, which can be interpreted as thermal evaporation of Li₂O during sintering at elevated temperature.

Figure S5. Nyquist plots of commercial LiFePO₄/C nanomaterial performed at open circuit voltage (OCV) after three cycles of activation. Inset shows the equivalent circuit and corresponding fitted values of ohmic resistance (R_e) and charge transfer resistance (R_{ct}).

Figure S6. Galvanostatic charge-discharge curves of LiFePO₄/C nanomaterial at various rates tested with a relatively higher mass loading of ~5 mg cm⁻². Accordingly, the capacities are determined to be 160.2, 149.7, 135.9, 122.4, 104.3 and 84.7 mAh g⁻¹ when discharging at 0.2 C, 1 C, 5 C, 10 C, 30 C and 60 C respectively.